首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Automatic Musculoskeletal and Neurological Disorder Diagnosis With Relative Joint Displacement From Human Gait
【24h】

Automatic Musculoskeletal and Neurological Disorder Diagnosis With Relative Joint Displacement From Human Gait

机译:步态相对关节移位的自动肌肉骨骼和神经系统疾病诊断

获取原文
获取原文并翻译 | 示例

摘要

Musculoskeletal and neurological disorders are common devastating companions of ageing, leading to a reduction in quality of life and increased mortality. Gait analysis is a popular method for diagnosing these disorders. However, manually analyzing the motion data is a labor-intensive task, and the quality of the results depends on the experience of the doctors. In this paper, we propose an automatic framework for classifying musculoskeletal and neurological disorders among older people based on 3D motion data. We also propose two new features to capture the relationship between joints across frames, known as 3D Relative Joint Displacement (3DRJDP) and 6D Symmetric Relative Joint Displacement (6DSymRJDP), such that the relative movement between joints can be analyzed. To optimize the classification performance, we adapt feature selection methods to choose an optimal feature set from the raw feature input. Experimental results show that we achieve a classification accuracy of 84.29% using the proposed relative joint features, outperforming existing features that focus on the movement of individual joints. Considering the limited open motion database for gait analysis focusing on such disorders, we construct a comprehensive, openly accessible 3D full-body motion database from 45 subjects.
机译:肌肉骨骼和神经系统疾病是衰老的常见破坏性伴侣,导致生活质量下降和死亡率增加。步态分析是诊断这些疾病的流行方法。但是,手动分析运动数据是一项劳动密集型任务,并且结果的质量取决于医生的经验。在本文中,我们提出了一种基于3D运动数据对老年人的肌肉骨骼和神经系统疾病进行分类的自动框架。我们还提出了两个新功能来捕获跨框架的关节之间的关系,称为3D相对关节位移(3DRJDP)和6D对称相对关节位移(6DSymRJDP),以便可以分析关节之间的相对运动。为了优化分类性能,我们采用特征选择方法从原始特征输入中选择最佳特征集。实验结果表明,使用提出的相对关节特征,我们的分类精度达到了84.29%,优于集中于单个关节运动的现有特征。考虑到有限的开放式运动数据库用于针对此类疾病的步态分析,我们从45位受试者中构建了一个全面的,可公开访问的3D全身运动数据库。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号