首页> 外文期刊>Network and Service Management, IEEE Transactions on >An Effective Network Traffic Classification Method with Unknown Flow Detection
【24h】

An Effective Network Traffic Classification Method with Unknown Flow Detection

机译:一种具有未知流量检测的有效网络流量分类方法

获取原文
获取原文并翻译 | 示例

摘要

Traffic classification technique is an essential tool for network and system security in the complex environments such as cloud computing based environment. The state-of-the-art traffic classification methods aim to take the advantages of flow statistical features and machine learning techniques, however the classification performance is severely affected by limited supervised information and unknown applications. To achieve effective network traffic classification, we propose a new method to tackle the problem of unknown applications in the crucial situation of a small supervised training set. The proposed method possesses the superior capability of detecting unknown flows generated by unknown applications and utilizing the correlation information among real-world network traffic to boost the classification performance. A theoretical analysis is provided to confirm performance benefit of the proposed method. Moreover, the comprehensive performance evaluation conducted on two real-world network traffic datasets shows that the proposed scheme outperforms the existing methods in the critical network environment.
机译:流量分类技术是复杂环境(例如基于云计算的环境)中网络和系统安全性的重要工具。最新的流量分类方法旨在利用流量统计功能和机器学习技术的优势,但是分类性能受到有限的监督信息和未知应用的严重影响。为了实现有效的网络流量分类,我们提出了一种新方法来解决在小型监督训练集的关键情况下未知应用程序的问题。该方法具有检测未知应用产生的未知流并利用现实网络流量之间的相关信息来提高分类性能的优越能力。提供理论分析以确认所提出方法的性能优势。此外,对两个实际网络流量数据集进行的综合性能评估表明,该方案在关键网络环境中的性能优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号