首页> 外文期刊>IEEE transactions on network and service management >Application-Aware Network Design for Hadoop MapReduce Optimization Using Software-Defined Networking
【24h】

Application-Aware Network Design for Hadoop MapReduce Optimization Using Software-Defined Networking

机译:使用软件定义的网络进行Hadoop MapReduce优化的应用感知网络设计

获取原文
获取原文并翻译 | 示例

摘要

The MapReduce (M/R) framework used in Hadoop has become the de facto standard for big data analytics. However, the lack of network-awareness of the default M/R resource manager in a traditional IP network can cause unbalanced job scheduling and network bottlenecks; such factors can eventually lead to an increase in the Hadoop M/R job completion time. In this paper, we propose a software-defined network (SDN) approach in an application-aware network (AAN) platform that provides both underlying networks functions as well M/R particular forwarding logics. We measure the resources' usage for M/R workloads using the HiBench benchmark suite to identify the traffic pattern. We then demonstrate that by using our AAN-SDN framework, which uses an adaptive traffic engineering mechanism, the job completion time can be noticeably improved.
机译:Hadoop中使用的MapReduce(M / R)框架已成为大数据分析的事实上的标准。但是,传统IP网络中缺少默认M / R资源管理器的网络意识会导致不平衡的作业调度和网络瓶颈。这些因素最终可能导致Hadoop M / R作业完成时间增加。在本文中,我们提出了一种在应用程序感知网络(AAN)平台中的软件定义网络(SDN)方法,该方法提供了基础网络功能以及M / R特定的转发逻辑。我们使用HiBench基准套件来确定流量模式,从而测量M / R工作负载的资源使用情况。然后,我们演示通过使用AAN-SDN框架(该框架使用自适应流量工程机制),可以显着改善作业完成时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号