首页> 外文期刊>Network and Service Management, IEEE Transactions on >Machine Learning-Based Routing and Wavelength Assignment in Software-Defined Optical Networks
【24h】

Machine Learning-Based Routing and Wavelength Assignment in Software-Defined Optical Networks

机译:基于机器学习的路由和软件定义光网络中的波长分配

获取原文
获取原文并翻译 | 示例

摘要

Recently, machine learning (ML) has attracted the attention of both researchers and practitioners to address several issues in the optical networking field. This trend has been mainly driven by the huge amount of available data (i.e., signal quality indicators, network alarms, etc.) and to the large number of optimization parameters which feature current optical networks (such as, modulation format, lightpath routes, transport wavelength, etc.). In this paper, we leverage the techniques from the ML discipline to efficiently accomplish the routing and wavelength assignment (RWA) for an input traffic matrix in an optical WDM network. Numerical results show that near-optimal RWA can be obtained with our approach, while reducing computational time up to 93% in comparison to a traditional optimization approach based on integer linear programming. Moreover, to further demonstrate the effectiveness of our approach, we deployed the ML classifier into an ONOS-based software defined optical network laboratory testbed, where we evaluate the performance of the overall RWA process in terms of computational time.
机译:最近,机器学习(ML)引起了研究人员和从业者的注意,解决了光学网络领域的几个问题。这一趋势主要由大量可用数据(即信号质量指标,网络报警等)和大量优化参数驱动,该参数具有当前光网络(例如,调制格式,LighPath路线,运输波长等)。在本文中,我们利用ML学科的技术利用了用于在光学WDM网络中有效地完成输入业务矩阵的路由和波长分配(RWA)。数值结果表明,与我们的方法可以获得近最优RWA,同时与基于整数线性编程的传统优化方法相比,降低了高达93%的计算时间。此外,为了进一步展示我们方法的有效性,我们将ML分类器部署到基于ONO的软件定义的光网络实验室测试平台,在那里我们在计算时间方面评估整个RWA过程的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号