首页> 外文期刊>Network and Service Management, IEEE Transactions on >Machine Learning-Based Routing and Wavelength Assignment in Software-Defined Optical Networks
【24h】

Machine Learning-Based Routing and Wavelength Assignment in Software-Defined Optical Networks

机译:软件定义的光网络中基于机器学习的路由和波长分配

获取原文
获取原文并翻译 | 示例

摘要

Recently, machine learning (ML) has attracted the attention of both researchers and practitioners to address several issues in the optical networking field. This trend has been mainly driven by the huge amount of available data (i.e., signal quality indicators, network alarms, etc.) and to the large number of optimization parameters which feature current optical networks (such as, modulation format, lightpath routes, transport wavelength, etc.). In this paper, we leverage the techniques from the ML discipline to efficiently accomplish the routing and wavelength assignment (RWA) for an input traffic matrix in an optical WDM network. Numerical results show that near-optimal RWA can be obtained with our approach, while reducing computational time up to 93% in comparison to a traditional optimization approach based on integer linear programming. Moreover, to further demonstrate the effectiveness of our approach, we deployed the ML classifier into an ONOS-based software defined optical network laboratory testbed, where we evaluate the performance of the overall RWA process in terms of computational time.
机译:最近,机器学习(ML)吸引了研究人员和从业人员的注意力,以解决光网络领域中的几个问题。这种趋势主要是由大量可用数据(即信号质量指示器,网络警报等)以及具有当前光网络特征的大量优化参数(例如,调制格式,光路路线,传输)驱动的。波长等)。在本文中,我们利用ML学科的技术来有效地完成光学WDM网络中输入流量矩阵的路由和波长分配(RWA)。数值结果表明,与传统的基于整数线性规划的优化方法相比,使用我们的方法可以获得接近最佳的RWA,同时将计算时间减少了93%。此外,为了进一步证明我们的方法的有效性,我们将ML分类器部署到了基于ONOS的软件定义的光网络实验室测试平台中,在此我们根据计算时间评估整个RWA过程的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号