首页> 外文期刊>IEEE transactions on nanotechnology >Irreversible n to p Transition and Corresponding Performance Improvement of RGO/TiO2Nanotubes Hybrid Vapor Sensor Devices by Varying Electrophoretic Deposition Time
【24h】

Irreversible n to p Transition and Corresponding Performance Improvement of RGO/TiO2Nanotubes Hybrid Vapor Sensor Devices by Varying Electrophoretic Deposition Time

机译:改变电泳沉积时间,RGO / TiO 2 纳米管混合蒸气传感器装置的不可逆n向p转变和相应性能的改进

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an irreversible n-type to p-type conductivity transition is correlated with the corresponding vapor sensing performance improvement of reduced graphene oxide (RGO) and TiO2nanotubes-based hybrid vapor sensor devices. The RGO was deposited on top of electrochemically grown TiO2nanotube (NT) array by electrophoretic deposition technique. The deposition time was varied from 0.5 to 3 h and it was established through XPS and electrochemical impedance spectroscopy (EIS) measurement that the conductivity of the RGO changed from n- to p-type, in an irreversible manner, when the deposition time exceeded 2.6 h. Characterizations such as an FESEM and an RAMAN spectroscopy study revealed that with increase in electrodeposition time, the percentage coverage of the RGO on TiO2NT matrix (n-type in nature) was increased monotonically reaching almost 90% coverage in 2.6 h, causing the overall device conductivity to change from n- to p-type (i.e., the overall conductivity is governed by the conductivity of p-type RGO, as it covered 90% of the nanotube matrix). The sensing performance of the hybrid structure was also investigated and the device with higher electrodeposition time (p-type) was found to offer better vapor sensing performance towards acetone (as the test species) compared to its n-type counterpart (lower electro-deposition time). Such improvement in sensing performance was possibly attributed to the additional adsorption sites and higher electron mobility of p-RGO over n-RGO.
机译:在本文中,不可逆的n型到p型电导率跃迁与还原型氧化石墨烯(RGO)和TiO的相应蒸气感测性能的改善相关。 n 2 nnanotubes-based混合蒸汽传感器设备。 RGO通过电泳沉积法沉积在电化学生长的TiO n 2 nnanotube(NT)阵列的顶部技术。沉积时间从0.5到3 h不等,通过XPS和电化学阻抗谱(EIS)测量可以确定,当沉积时间超过2.6时,RGO的电导率不可逆地从n型变为p型。 H。 FESEM和RAMAN光谱研究等特征表明,随着电沉积时间的增加,RGO在TiO n 2 nNT矩阵(本质上为n型)在2.6小时内单调增加,几乎达到90%的覆盖率,从而导致整个器件的电导率从n型变为p型(即整体电导率受p型RGO的电导率控制,因为它覆盖了纳米管基质的90%。还研究了混合结构的感测性能,发现与n型对应物(较低的电沉积)相比,具有更长电沉积时间(p型)的器件对丙酮(作为测试物质)具有更好的蒸气感测性能。时间)。感测性能的这种改善可能归因于p-RGO的吸附位点比n-RGO更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号