首页> 外文期刊>IEEE Transactions on Microwave Theory and Techniques >Fast capacitance extraction of general three-dimensional structures
【24h】

Fast capacitance extraction of general three-dimensional structures

机译:通用三维结构的快速电容提取

获取原文
获取原文并翻译 | 示例

摘要

K. Nabors and J. White (1991) presented a boundary-element-based algorithm for computing the capacitance of three-dimensional m-conductor structures whose computational complexity grows nearly as mn, where n is the number of elements used to discretize the conductor surfaces. In that algorithm, a generalized conjugate residual iterative technique is used to solve the n*n linear system arising from the discretization, and a multipole algorithm is used to compute the iterates. Several improvements to that algorithm are described which make the approach applicable and computationally efficient for almost any geometry of conductors in a homogeneous dielectric. Results using these techniques in a program which computes the capacitance of general 3D structures are presented to demonstrate that the new algorithm is nearly as accurate as the more standard direct factorization approach, and is more than two orders of magnitude faster for large examples.
机译:K. Nabors和J. White(1991)提出了一种基于边界元的算法,用于计算三维m导体结构的电容,其计算复杂度几乎增加到mn,其中n是用于离散化导体的元素数量表面。在该算法中,广义共轭残差迭代技术用于求解离散化产生的n * n线性系统,而多极算法用于计算迭代。描述了对该算法的一些改进,这些改进使该方法适用于均质电介质中几乎任何几何形状的导体,并且在计算上有效。提出了在计算通用3D结构电容的程序中使用这些技术的结果,以证明新算法几乎与更标准的直接因子分解方法一样准确,并且对于大型示例而言,新算法的速度快了两个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号