首页> 外文期刊>IEEE Transactions on Microwave Theory and Techniques >Sparse Identification of Volterra Models for Power Amplifiers Without Pseudoinverse Computation
【24h】

Sparse Identification of Volterra Models for Power Amplifiers Without Pseudoinverse Computation

机译:没有伪计算的功率放大器Volterra模型的稀疏识别

获取原文
获取原文并翻译 | 示例

摘要

We present a new formulation of the doubly orthogonal matching pursuit (DOMP) algorithm for the sparse recovery of Volterra series models. The proposal works over the covariance matrices by taking advantage of the orthogonal properties of the solution at each iteration and avoids the calculation of the pseudoinverse matrix to obtain the model coefficients. A detailed formulation of the algorithm is provided along with a computational complexity assessment, showing a fixed complexity per iteration compared with its previous versions in which it depends on the iteration number. Moreover, we empirically demonstrate the reduction in computational complexity in terms of runtime and highlight the pruning capabilities through its application to the digital predistortion of a class J power amplifier operating under 5G-NR signals with the bandwidth of 20 and 30 MHz, concluding that this proposal significantly outperforms existing techniques in terms of computational complexity.
机译:我们展示了一种新的配方,对Volterra系列模型的稀疏恢复进行了双重正交匹配追求(DOMP)算法。该提案通过利用在每次迭代时的解决方案的正交性能来处理协方差矩阵,并避免伪矩阵的计算以获得模型系数。提供了对算法的详细制定,以及计算复杂性评估,与其以前的版本相比,迭代的固定复杂性,其中它取决于迭代号。此外,我们经验证明了在运行时计算复杂性的减少,并通过应用于在5G-NR信号下运行的A类功率的数字预失真的应用程序来突出显示,具有20和30 MHz的带宽,得出结论提案在计算复杂性方面显着优于现有技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号