首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Two-Sided Online Micro-Task Assignment in Spatial Crowdsourcing
【24h】

Two-Sided Online Micro-Task Assignment in Spatial Crowdsourcing

机译:空间众包中的双面在线微任务分配

获取原文
获取原文并翻译 | 示例

摘要

With the rapid development of smartphones, spatial crowdsourcing platforms are getting popular. A foundational research of spatial crowdsourcing is to allocate micro-tasks to suitable crowd workers. Many existing studies focus on the offline scenario, where all the spatiotemporal information of micro-tasks and crowd workers is given. In this paper, we focus on the online scenario and identify a more practical micro-task allocation problem, called the Global Online Micro-task Allocation in spatial crowdsourcing (GOMA) problem. We first extend the state-of-the-art algorithm for the online maximum weighted bipartite matching problem to the GOMA problem as the baseline algorithm. Although the baseline algorithm provides a theoretical guarantee for the worst case, its average performance in practice is not good enough since the worst case happens with a very low probability in the real world. Thus, we consider the average performance of online algorithms, a.k.a. random order model. We propose a two-phase-based framework, based on which we present the TGOA algorithm with a 1/4-competitive ratio under the random order model. To improve its efficiency, we further design the TGOA-Greedy and TGOA-OP algorithm following this framework, which runs faster than the TGOA algorithm with a competitive ratio of 1/8 and 1/4, respectively. We also revisit the average performance of Greedy, which has long been considered as the worst due to its unbounded competitive ratio in the worst case. Finally, we verify the effectiveness and efficiency of the proposed methods through extensive experiments on synthetic and real datasets.
机译:随着智能手机的快速发展,空间众包平台正在受欢迎。空间众包的基础研究是将微型任务分配给合适的人群工人。许多现有的研究侧重于离线方案,其中给出了微调和人群工人的所有时空信息。在本文中,我们专注于在线情景并确定更实用的微任务分配问题,称为空间众包(GOMA)问题中的全球在线微任务分配。我们首先将在线最大加权双链匹配问题扩展到戈马问题作为基线算法的最先进的算法。虽然基线算法为最坏情况提供了理论保证,但其在实践中的平均性能并不好,因为最坏的情况发生在现实世界中的概率很低。因此,我们考虑在线算法的平均性能,A.K.a.随机阶模型。我们提出了一种基于两阶段的框架,基于该框架,基于该框架,我们在随机阶模型下以1/4竞争比率呈现TGOA算法。为了提高其效率,我们进一步设计了此框架之后的TGOA贪婪和TGOA-OP算法,该算法分别比具有1/8和1/4竞争比率的TGOA算法更快。我们还重新审视了贪婪的平均性能,这长期被认为是最糟糕的竞争比例在最坏的情况下。最后,我们通过对合成和真实数据集的广泛实验验证所提出的方法的有效性和效率。

著录项

  • 来源
  • 作者单位

    Beihang Univ State Key Lab Software Dev Environm Beijing 100191 Peoples R China|Beihang Univ Beijing Adv Innovat Ctr Big Data & Brain Comp Beijing 100191 Peoples R China;

    Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Kowloon Clear Water Bay Hong Kong Peoples R China;

    Alibaba Grp Bellevue WA 98004 USA;

    Beihang Univ State Key Lab Software Dev Environm Beijing 100191 Peoples R China|Beihang Univ Beijing Adv Innovat Ctr Big Data & Brain Comp Beijing 100191 Peoples R China;

    Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Kowloon Clear Water Bay Hong Kong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Spatiotemporal phenomena; Spatial crowdsourcing; task assignment; online bipartite matching;

    机译:时空现象;空间众包;任务分配;在线双胞胎匹配;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号