首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >GraphInception: Convolutional Neural Networks for Collective Classification in Heterogeneous Information Networks
【24h】

GraphInception: Convolutional Neural Networks for Collective Classification in Heterogeneous Information Networks

机译:GraphInception:异构信息网络中集体分类的卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

Collective classification has attracted considerable attention in the last decade, where the labels within a group of instances are correlated and should be inferred collectively, instead of independently. Conventional approaches on collective classification mainly focus on exploiting simple relational features (such as count and exists aggregators on neighboring nodes). However, many real-world applications involve complex dependencies among the instances, which are obscure/hidden in the networks. To capture these dependencies in collective classification, we need to go beyond simple relational features and extract deep dependencies between the instances. In this paper, we study the problem of deep collective classification in Heterogeneous Information Networks (HINs), which involve different types of autocorrelations, from simple to complex relations, among the instances. Different from conventional autocorrelations, which are given explicitly by the links in the network, complex autocorrelations are obscure/hidden in HINs, and should be inferred from existing links in a hierarchical order. This problem is highly challenging due to the multiple types of dependencies among the nodes and the complexity of the relational features. In this study, we proposed a deep convolutional collective classification method, called GraphInception, to learn the deep relational features in HINs. And we presented two versions of the models with different inference styles. The proposed methods can automatically generate a hierarchy of relational features with different complexities. Extensive experiments on four real-world networks demonstrate that our approach can improve the collective classification performance by considering deep relational features in HINs.
机译:集体分类在过去十年中引起了相当大的关注,其中一组实例内的标签是相关的,并且应该集体推断而不是独立推断。集体分类的常规方法主要集中在利用简单的关系特征(例如COUNT和相邻节点上的聚合器)。然而,许多真实世界应用程序涉及该实例之间的复杂依赖关系,这些依赖性在网络中晦涩/隐藏。要捕获集体分类中的这些依赖项,我们需要超越简单的关系功能,并在实例之间提取深层依赖性。在本文中,我们研究异构信息网络(HUN)中的深度集体分类问题,涉及不同类型的自相关,从简单到复杂关系,在实例中。与网络中的链接明确给出的传统自相关,复杂的自相关的不同,复杂的自相关,在关环中晦涩/隐藏,并且应该以分层顺序从现有链接推断出来。由于节点之间的多种类型的依赖性以及关系特征的复杂性,此问题具有高度挑战。在这项研究中,我们提出了一种被称为GraphInception的深度卷积的集体分类方法,以了解旋风中的深度关系特征。我们介绍了两个具有不同推理样式的模型版本。所提出的方法可以自动生成具有不同复杂性的关系特征的层次结构。四个真实网络的广泛实验表明,我们的方法可以通过考虑素质的深层关系功能来改善集体分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号