首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >SlimML: Removing Non-Critical Input Data in Large-Scale Iterative Machine Learning
【24h】

SlimML: Removing Non-Critical Input Data in Large-Scale Iterative Machine Learning

机译:SLIMML:在大型迭代机学习中删除非关键输入数据

获取原文
获取原文并翻译 | 示例

摘要

The core of many large-scale machine learning (ML) applications, such as neural networks (NN), support vector machine (SVM), and convolutional neural network (CNN), is the training algorithm that iteratively updates model parameters by processing massive datasets. From a plethora of studies aiming at accelerating ML, being data parallelization and parameter server, the prevalent assumption is that all data points are equivalently relevant to model parameter updating. In this article, we challenge this assumption by proposing a criterion to measure a data point's effect on model parameter updating, and experimentally demonstrate that the majority of data points are non-critical in the training process. We develop a slim learning framework, termed SlimML, which trains the ML models only on the critical data and thus significantly improves training performance. To such an end, SlimML efficiently leverages a small number of aggregated data points per iteration to approximate the criticalness of original input data instances. The proposed approach can be used by changing a few lines of code in a standard stochastic gradient descent (SGD) procedure, and we demonstrate experimentally, on NN regression, SVM classification, and CNN training, that for large datasets, it accelerates model training process by an average of 3.61 times while only incurring accuracy losses of 0.37 percent.
机译:许多大型机器学习(ML)应用的核心,如神经网络(NN),支持向量机(SVM)和卷积神经网络(CNN),是通过处理大量数据集来迭代更新模型参数的训练算法。根据旨在加速ML的血清研究,是数据并行化和参数服务器,普遍的假设是所有数据点与模型参数更新等效相关。在本文中,我们通过提出测量数据点对模型参数更新的影响的标准来挑战这一假设,并通过实验证明大多数数据点在训练过程中是非关键的。我们开发了一个苗条的学习框架,被称为Slimml,只会在关键数据上训练ML模型,从而显着提高训练性能。在这样的结束时,SLIMML有效地利用少量偏移的聚合数据点以近似原始输入数据实例的临界性。可以通过在标准随机梯度下降(SGD)程序中改变几行代码来使用所提出的方法,我们在实验上展示,在NN回归,SVM分类和CNN训练中,即对于大型数据集,它加速了模型培训过程平均平均3.61倍,只能产生0.37%的精度损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号