首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Incremental Graph Pattern Based Node Matching with Multiple Updates
【24h】

Incremental Graph Pattern Based Node Matching with Multiple Updates

机译:基于增量图模式的基于节点与多个更新匹配

获取原文
获取原文并翻译 | 示例

摘要

Graph Pattern based Node Matching (GPNM) has been proposed to find all the matches of the nodes in a data graph GD based on a given pattern graph G(P). GPNM has been increasingly adopted in many applications such as group finding and expert recommendation, in which data graphs are frequently updated over time. Moreover, many typical pattern graphs frequently and repeatedly appear in users' queries in a short period of time, e.g., social graph searches on Facebook. To deliver a GPNM result in such applications, the existing GPNM methods have to perform an incremental GPNM procedure for each of the updates in the data graph, which is computationally expensive. To address this problem, in this paper, we first analyze the elimination relationships between multiple updates in G(D) and the hierarchical structure between these elimination relationships. Then, we generate an Elimination Hierarchy Tree (EH-Tree) to index the elimination relationships and propose an EH-Tree based GPNM method, called EH-GPNM, considering the elimination relationships between multiple updates in G(D). EH-GPNM first delivers the GPNM result of an initial query, and then delivers the GPNM result of a subsequent query, based on the initial GPNM result and the multiple updates of G(D) that occur between those two queries. The experimental results on five real-world social graphs demonstrate that our proposed EH-GPNM is much more efficient than the state-of-the-art GPNM methods.
机译:已经提出了基于图形模式的节点匹配(GPNM)以基于给定模式图G(P)在数据图GD中找到节点的所有匹配。 GPNM在许多应用程序中越来越多地采用,例如组查找和专家推荐,其中数据图经常随时间更新。此外,许多典型的图案图在用户在短时间内经常和重复出现在用户的查询中,例如,在Facebook上搜索社交图。为了在此类应用程序中提供GPNM结果,现有的GPNM方法必须为数据图中的每个更新执行增量GPNM过程,这是计算昂贵的。为了解决这个问题,在本文中,我们首先分析了G(d)的多个更新与这些消除关系之间的分层结构之间的消除关系。然后,我们生成消除层次结构树(EH树)以索引消除关系并提出基于EH树的GPNM方法,称为EH-GPNM,考虑到G(D)中的多个更新之间的消除关系。 eh-gpnm首先提供初始查询的GPNM结果,然后根据初始GPNM结果和在这两个查询之间发生的G(d)的多个更新,提供后续查询的GPNM结果。五个现实世界社会图的实验结果表明,我们提出的EH-GPNM比最先进的GPNM方法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号