首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Unsupervised Linear Discriminant Analysis for Jointly Clustering and Subspace Learning
【24h】

Unsupervised Linear Discriminant Analysis for Jointly Clustering and Subspace Learning

机译:联合聚类和子空间学习的无监督线性判别分析

获取原文
获取原文并翻译 | 示例

摘要

Linear discriminant analysis (LDA) is one of commonly used supervised subspace learning methods. However, LDA will be powerless faced with the no-label situation. In this paper, the unsupervised LDA (Un-LDA) is proposed and first formulated as a seamlessly unified objective optimization which guarantees convergence during the iteratively alternative solving process. The objective optimization is in both the ratio trace and the trace ratio forms, forming a complete framework of a new approach to jointly clustering and unsupervised subspace learning. The extension of LDA into Un-LDA enables to not only complete unsupervised subspace learning via the explicitly presented subspace projection matrix but also simultaneously finish clustering and even clustering out-of-sample data via the explicitly presented transformation matrix. To overcome the difficulty in solving the non-convex objective optimization, we mathematically prove that the Un-LDA optimization in both forms can be transformed into the simple K-means clustering optimization when the subspace is determined. The Un-LDA optimization is eventually completed by alternatively optimizing the clusters using K-means and the subspace using the supervised LDA methods and iterating this whole process until convergence or stopping criterion. The experiments demonstrate that our proposed Un-LDA algorithms are comparable or even much superior to the counterparts.
机译:线性判别分析(LDA)是常用的监督子空间学习方法之一。但是,LDA将无能为力地面对无标签情况。在本文中,提出了无监督的LDA(UN-LDA)并首先制定为无缝统一的客观优化,可确保在迭代替代求解过程中的收敛性。客观优化在比率迹线和跟踪比形式中,形成了一个完整的联合聚类方法和无监督的子空间学习方法的完整框架。 LDA扩展LDA进入UN-LDA,使得不仅可以通过明确呈现的子空间投影矩阵完全完成无监督的子空间学习,而且同时通过显式呈现的转换矩阵同时完成群集甚至群集样本数据。为了克服解决非凸面客观优化的困难,我们数学上证明这两种形式的UN-LDA优化可以在确定子空间时转换为简单的K-Means聚类优化。最终通过使用监控的LDA方法使用K-Meanse和子空间优化群集来完成UN-LDA优化,并在收敛或停止标准之前迭代这一整个过程。实验表明,我们所提出的UN-LDA算法是可比的,甚至更优于对应物。

著录项

  • 来源
  • 作者单位

    Xi An Jiao Tong Univ Natl Engn Lab Visual Informat Proc & Applicat Xian 710049 Shaanxi Peoples R China|Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Natl Engn Lab Visual Informat Proc & Applicat Xian 710049 Shaanxi Peoples R China|Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian 710049 Shaanxi Peoples R China;

    Northwestern Polytech Univ Sch Comp Sci Xian 710072 Shaanxi Peoples R China|Northwestern Polytech Univ Ctr Opt IMagery Anal & Learning OPTIMAL Xian 710072 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Natl Engn Lab Visual Informat Proc & Applicat Xian 710049 Shaanxi Peoples R China|Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Natl Engn Lab Visual Informat Proc & Applicat Xian 710049 Shaanxi Peoples R China|Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian 710049 Shaanxi Peoples R China;

    Northwestern Polytech Univ Sch Comp Sci Xian 710072 Shaanxi Peoples R China|Northwestern Polytech Univ Ctr Opt IMagery Anal & Learning OPTIMAL Xian 710072 Shaanxi Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Optimization; Clustering algorithms; Clustering methods; Feature extraction; Linear discriminant analysis; Learning systems; Principal component analysis; LDA; K-means; unsupervised subspace method; clustering;

    机译:优化;聚类算法;聚类方法;特征提取;线性判别分析;学习系统;主成分分析;LDA;k均值;无监督的子空间方法;聚类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号