首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A Review on Dimensionality Reduction for Multi-Label Classification
【24h】

A Review on Dimensionality Reduction for Multi-Label Classification

机译:多标签分类的维度减少述评

获取原文
获取原文并翻译 | 示例

摘要

Multi-label classification has gained in importance in the last decade and it is today confronted to the current needs to process massive raw data from heterogeneous sources. Therefore, dimensionality reduction, which aims at reducing the number of features, labels, or both, knows a renewed interest to enhance the scaling properties of the classifiers and their predictive performances. In this paper we review more than fifty papers presenting dimensionality reduction approaches for multi-label classification and we propose an analysis in three steps : (i) a typology of the methods describing the main components of their strategies, the problem they tackle and the way they solve it (ii) a unified formalization of the problems to help to distinguish the similarities and differences between the approaches, and (iii) a meta-analysis of the published experimental results inspired by the consensus theory to identify the most efficient algorithms.
机译:多标签分类在过去十年中具有重要性,目前对当前需要处理来自异质来源的大规模原始数据。因此,旨在减少减少特征,标签或两者的数量的维度减少,知道增强分类器的扩展属性及其预测性能的重新兴趣。在本文中,我们审查了超过五十篇论文,提出了多标签的多标签分类方法,我们提出了三个步骤的分析:(i)描述其策略主要组成部分的方法的类型,他们解决的问题和方式他们解决了(ii)问题的统一形式化,有助于区分方法与(iii)的相似性和差异,并通过共识理论启发的已发表的实验结果的Meta分析,以确定最有效的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号