首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Translation-Based Sequential Recommendation for Complex Users on Sparse Data
【24h】

Translation-Based Sequential Recommendation for Complex Users on Sparse Data

机译:在稀疏数据上的复杂用户的翻译顺序推荐

获取原文
获取原文并翻译 | 示例

摘要

Sequential recommendation is one of the main tasks in recommender systems, where the next action (e.g., purchase, visit, and click) of the user is predicted based on his/her past sequence of actions. Translating Embeddings is a knowledge graph completion approach which was recently adapted to a translation-based sequential recommendation (TransRec) method. We observe a flaw of TransRec when handling complex translations, which hinders it from generating accurate suggestions. In view of this, we propose a translation-based recommender for complex users (CTransRec), which utilizes category-specific projection and temporal dynamic relaxation. Using our proposed Margin-based Pairwise Bayesian Personalized Ranking and Time-Aware Negative Sampling, CTransRec outperforms state-of-the-art methods for sequential recommendation on extremely sparse data. The superiority of CTransRec, which is confirmed by our extensive experiments on both public data and real data obtained from the industry, comes from not only the additional information used in training but also the fact that CTransRec makes good use of this additional information to model the complex translations.
机译:顺序推荐是推荐系统中的主要任务之一,其中根据他/她的过去的操作序列预测用户的下一个操作(例如,购买,访问和点击)。翻译嵌入式是一个知识图表完成方法,最近适应了基于转换的顺序推荐(TransRec)方法。在处理复杂的翻译时,我们观察到跨越的跨rserrec漏洞,阻碍了它产生准确的建议。鉴于此,我们提出了一种基于翻译的推荐,适用于复杂的用户(CTransrec),其利用特定于类别的投影和时间动态松弛。使用我们所提出的基于保证金的成对贝叶斯个性化排名和时间感知的负面采样,CTransrec优于最先进的方法,以便在极其稀疏数据上进行顺序推荐。 CTransrec的优越性通过我们对业界的公共数据和实际数据的广泛实验证实,不仅来自培训中使用的其他信息,而且来自CTRANSREC良好地利用这些附加信息来建模复杂的翻译。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号