首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Semi-Supervised Deep Learning Approach for Transportation Mode Identification Using GPS Trajectory Data
【24h】

Semi-Supervised Deep Learning Approach for Transportation Mode Identification Using GPS Trajectory Data

机译:使用GPS轨迹数据进行半监控交通模式识别的深度学习方法

获取原文
获取原文并翻译 | 示例

摘要

Identification of travelers' transportation modes is a fundamental step for various problems that arise in the domain of transportation such as travel demand analysis, transport planning, and traffic management. In this paper, we aim to identify travelers' transportation modes purely based on their GPS trajectories. First, a segmentation process is developed to partition a user's trip into GPS segments with only one transportation mode. A majority of studies have proposed mode inference models based on hand-crafted features, which might be vulnerable to traffic and environmental conditions. Furthermore, the classification task in almost all models have been performed in a supervised fashion while a large amount of unlabeled GPS trajectories has remained unused. Accordingly, we propose a deep SEmi-Supervised Convolutional Autoencoder (SECA) architecture that can not only automatically extract relevant features from GPS segments but also exploit useful information in unlabeled data. The SECA integrates a convolutional-deconvolutional autoencoder and a convolutional neural network into a unified framework to concurrently perform supervised and unsupervised learning. The two components are simultaneously trained using both labeled and unlabeled GPS segments, which have already been converted into an efficient representation for the convolutional operation. An optimum schedule for varying the balancing parameters between reconstruction and classification errors are also implemented. The performance of the proposed SECA model, trip segmentation, the method for converting a raw trajectory into a new representation, the hyperparameter schedule, and the model configuration are evaluated by comparing to several baselines and alternatives for various amounts of labeled and unlabeled data. Our experimental results demonstrate the superiority of the proposed model over the state-of-the-art semi-supervised and supervised methods with respect to metrics such as accuracy and F-measure.
机译:旅行者的运输方式的识别是在运输领域出现的各种问题的基本步骤,如旅行需求分析,运输计划和交通管理。在本文中,我们旨在纯粹基于GPS轨迹识别旅行者的运输方式。首先,开发了分割过程以将用户的跳闸分配为具有一个传输模式的GPS段。大多数研究都提出了基于手工制作功能的模式推理模型,这可能很容易受到交通和环境条件的影响。此外,几乎所有模型中的分类任务已经以监督方式执行,而大量未标记的GPS轨迹仍未使用。因此,我们提出了一个深度半监督的卷积AutoEncoder(SECA)架构,其不仅可以自动从GPS段中提取相关的功能,而且可以在未标记的数据中利用有用的信息。 SECA将卷积 - 解卷积AutoEncoder和卷积神经网络集成到统一的框架中,以同时执行监督和无监督的学习。使用标记和未标记的GPS段同时训练这两个组分,这些GPS段已经被转换为卷积操作的有效表示。还实现了改变重建与分类错误之间平衡参数的最佳计划。提出的Seca模型的性能,跳闸分割,将原始轨迹转换为新的表示,超参数时间表和模型配置的方法,通过比较了几个基线和各种标记和未标记数据的替代品。我们的实验结果表明,关于最先进的半监督和监督方法的拟议模型的优越性,例如准确性和F测量值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号