首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Generalized Translation-Based Embedding of Knowledge Graph
【24h】

Generalized Translation-Based Embedding of Knowledge Graph

机译:基于广义的翻译的知识图嵌入

获取原文
获取原文并翻译 | 示例

摘要

Knowledge graphs are useful for many AI tasks but often have missing facts. To populate the graphs, knowledge graph embedding models have been developed. TransE is one of such models and the first translation-based method. TransE is well known because the principle of TransE can effectively capture the rules of a knowledge graph although it seems very simple. However, TransE has problems with its regularization and an unchangeable ratio of negative sampling. In this paper, we generalize TransE to solve these problems by proposing knowledge graph embedding on a Lie group (KGLG) and the Weighted Negative Part (WNP) method for the objective function of translation-based models. KGLG is the novel translation-based method which embeds entities and relations of a knowledge graph on any Lie group. It allows us not to employ regularization during training of the model if we choose a compact lie group for the embedding space. The WNP method is for changing the ratio of negative sampling, which enhances translation-based models. Our approach outperforms other state-of-the-art approaches such as TransE, DistMult, and ComplEx on a standard link prediction task. We show that TorusE, KGLG on a torus, is scalable to large-size knowledge graphs and faster than the original TransE.
机译:知识图表对于许多AI任务都很有用,但通常具有丢失的事实。要填充图形,已开发了知识图形嵌入模型。 Transe是这样的模型之一和基于Trysport的方法。宁静众所周知,因为Transe的原则可以有效地捕获知识图的规则,尽管似乎很简单。然而,Transe在其正则化和不可改样的否定比例存在问题。在本文中,我们通过提出在Lie Group(KGLG)和基于翻译模型的客观函数的目标函数的知识图形和加权负部分(WNP)方法来解决这些问题的Transe来解决这些问题。 KGLG是基于新型的基于方式的方式,将知识图的实体和关系嵌入任何LIE组。如果我们为嵌入空间选择一个紧凑的LIE组,它允许我们在模型训练期间不采用正常化。 WNP方法用于改变负采样的比率,增强基于转换的模型。我们的方法优于其他最先进的方法,如Transe,Distmult和标准链路预测任务。我们展示了Toruse,Torus上的Kglg,可扩展到大尺寸的知识图表,而不是原始Transe。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号