首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A Hybrid E-Learning Recommendation Approach Based on Learners’ Influence Propagation
【24h】

A Hybrid E-Learning Recommendation Approach Based on Learners’ Influence Propagation

机译:一种基于学习者影响传播的混合电子学习推荐方法

获取原文
获取原文并翻译 | 示例

摘要

In e-learning recommender systems, interpersonal information between learners is very scarce, which makes it difficult to apply collaborative filtering (CF) techniques to achieve recommendations. In this study, we propose a hybrid filtering recommendation approach ($SI-IFL$SI-IFL) combining learner influence model (LIM), self-organization based (SOB) recommendation strategy, and sequential pattern mining (SPM) together for recommending learning objects (LOs) to learners. The method works as follows: (i) LIM is applied to acquire the interpersonal information by computing the influence that a learner exerts on others. LIM consists of learner similarity, knowledge credibility, and learner aggregation, meanwhile, LIM is independent of ratings. Furthermore, to address the uncertainty and fuzzy natures of learners, intuitionistic fuzzy logic (IFL) is applied to optimize the LIM. (ii) A SOB recommendation strategy is applied to recommend the optimal learner cliques for active learners by simulating the influence propagation among learners. Influence propagation means that a learner can move towards active learners, and such behaviors can stimulate the moving behaviors of his/her neighbors. This SOB recommendation approach achieves a stable structure based on distributed and bottom-up behaviors of individuals. (iii) SPM is applied to decide the final learning objects (LOs) and navigational paths based on the recommended learner cliques. The experimental results demonstrate that $SI-IFL$SI-IFL can provide personalized and diversified recommendations, and it shows promising efficiency and adaptability in e-learning scenarios.
机译:在电子学习推荐系统中,学习者之间的人际关系非常稀缺,这使得难以应用协作过滤(CF)技术来实现推荐。在这项研究中,我们提出了一种混合过滤推荐方法($ SI-IFL $ SI-IFL)组合学习者影响模型(LIM),基于自组织(SOB)推荐策略和顺序模式挖掘(SPM),共同推荐学习对象(LOS)到学习者。该方法如下工作:(i)LIM被应用于通过计算学习者对他人的影响来获取人际关系信息。 LIM由学习者相似性,知识信誉和学习者聚集组成,同时,LIM与评级无关。此外,为了解决学习者的不确定性和模糊性质,应用直观模糊逻辑(IFL)来优化LIM。 (ii)通过模拟学习者之间的影响传播,向SOB建议策略推荐用于活跃学习者的最佳学习者派系。影响传播意味着学习者可以朝向活跃的学习者移动,并且这种行为可以刺激他/她邻居的移动行为。这种SOB推荐方法基于个体的分布式和自下而上行为实现了稳定的结构。 (iii)SPM应用于基于推荐的学习者批变来确定最终学习对象(LOS)和导航路径。实验结果表明,$ SI-IFL $ SI-IFL可以提供个性化和多样化的建议,并显示出在电子学习情景中的有希望效率和适应性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号