首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Adaptive Distributed RDF Graph Fragmentation and Allocation based on Query Workload
【24h】

Adaptive Distributed RDF Graph Fragmentation and Allocation based on Query Workload

机译:基于查询工作负载的自适应分布式RDF图碎片和分配

获取原文
获取原文并翻译 | 示例

摘要

As massive volumes of Resource Description Framework (RDF) data are growing, designing a distributed RDF database system to manage them is necessary. In designing this system, it is very common to partition the RDF data into some parts, called fragments, which are then distributed. Thus, the distribution design comprises two steps: fragmentation and allocation. In this study, we explore the workload for fragmentation and allocation, which aims to reduce the communication cost during SPARQL query processing. Specifically, we adaptively maintain some frequent access patterns (FAPs) to reflect the characteristics of the workload while ensuring the data integrity and approximation ratio. Based on these frequent access patterns, we propose three fragmentation strategies, namely vertical, horizontal, and mixed fragmentation, to divide RDF graphs while meeting different types of query processing objectives. After fragmentation, we discuss how to allocate these fragments to various sites while balancing the fragments. Finally, we discuss how to process queries based on the results of fragmentation and allocation. Experiments over large RDF datasets confirm the superior performance of our proposed solutions.
机译:由于大量资源描述框架(RDF)数据正在增长,设计分布式RDF数据库系统来管理它们是必要的。在设计该系统时,很常见的是将RDF数据分为某些部件,称为片段,然后分发。因此,分配设计包括两个步骤:碎片和分配。在这项研究中,我们探讨了碎片和分配的工作量,旨在降低SparQL查询处理期间的通信成本。具体地,我们自适应地维持一些频繁的访问模式(FAPS)以反映工作负载的特性,同时确保数据完整性和近似比。基于这些频繁访问模式,我们提出了三个碎片策略,即垂直,水平和混合碎片,在满足不同类型的查询处理目标时划分RDF图。在碎片后,我们讨论如何在平衡片段时将这些碎片分配给各种站点。最后,我们讨论如何根据碎片和分配结果处理查询。大型RDF数据集的实验证实了我们提出的解决方案的卓越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号