首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Adaptive Distributed RDF Graph Fragmentation and Allocation based on Query Workload
【24h】

Adaptive Distributed RDF Graph Fragmentation and Allocation based on Query Workload

机译:基于查询工作量的自适应分布式RDF图分段与分配

获取原文
获取原文并翻译 | 示例

摘要

As massive volumes of Resource Description Framework (RDF) data are growing, designing a distributed RDF database system to manage them is necessary. In designing this system, it is very common to partition the RDF data into some parts, called fragments, which are then distributed. Thus, the distribution design comprises two steps: fragmentation and allocation. In this study, we explore the workload for fragmentation and allocation, which aims to reduce the communication cost during SPARQL query processing. Specifically, we adaptively maintain some frequent access patterns (FAPs) to reflect the characteristics of the workload while ensuring the data integrity and approximation ratio. Based on these frequent access patterns, we propose three fragmentation strategies, namely vertical, horizontal, and mixed fragmentation, to divide RDF graphs while meeting different types of query processing objectives. After fragmentation, we discuss how to allocate these fragments to various sites while balancing the fragments. Finally, we discuss how to process queries based on the results of fragmentation and allocation. Experiments over large RDF datasets confirm the superior performance of our proposed solutions.
机译:随着大量的资源描述框架(RDF)数据的增长,有必要设计一个分布式RDF数据库系统来管理它们。在设计该系统时,将RDF数据划分为一些部分(称为片段)然后分发,这是很常见的。因此,分发设计包括两个步骤:分段和分配。在这项研究中,我们探索了碎片和分配的工作量,目的是减少SPARQL查询处理期间的通信成本。具体来说,我们在确保数据完整性和近似率的同时,自适应地维护一些频繁访问模式(FAP)以反映工作负载的特征。基于这些频繁访问模式,我们提出了三种分段策略,即垂直,水平和混合分段,以在满足不同类型的查询处理目标的同时划分RDF图。碎片之后,我们讨论如何在平衡碎片的同时将这些碎片分配到各个站点。最后,我们讨论如何根据碎片和分配的结果处理查询。在大型RDF数据集上进行的实验证实了我们提出的解决方案的出色性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号