首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Learning classification rules from database in the context of knowledge acquisition and representation
【24h】

Learning classification rules from database in the context of knowledge acquisition and representation

机译:在知识获取和表示的背景下从数据库中学习分类规则

获取原文
获取原文并翻译 | 示例

摘要

A method for learning knowledge from a database is used to address the bottleneck of manual knowledge acquisition. An attempt is made to improve representation with the assistance of experts and from computer resident knowledge. The knowledge representation is described in the framework of a conceptual schema consisting of a semantic model and an event model. A concept classifies a domain into different subdomains. As a method of knowledge acquisition, inductive learning techniques are used for rule generation. The theory of rough sets is used in designing the learning algorithm. Examples of certain concepts are used to induce general specifications of the concepts called classification rules. The basic approach is to partition the information into equivalence classes and to derive conclusions based on equivalence relations. In a sense, what is involved is a data-reduction process, where the goal is to reduce a large database of information to a small number of rules describing the domain. This completely integrated approach includes user interface, semantics, constraints, representations of temporal events, induction, etc.
机译:一种用于从数据库中学习知识的方法用于解决手动知识获取的瓶颈。尝试在专家的协助下以及从计算机常识中提高代表性。知识表示是在概念模式的框架中描述的,该概念模式由语义模型和事件模型组成。概念将域划分为不同的子域。作为知识获取的一种方法,归纳学习技术用于规则生成。粗糙集理论用于设计学习算法。某些概念的示例用于归纳称为分类规则的概念的一般规格。基本方法是将信息划分为等价类,并根据等价关系得出结论。从某种意义上讲,所涉及的是数据缩减过程,其目的是将大型信息数据库缩减为描述该域的少量规则。这种完全集成的方法包括用户界面,语义,约束,时间事件的表示,归纳等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号