首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A comparison of standard spell checking algorithms and a novel binary neural approach
【24h】

A comparison of standard spell checking algorithms and a novel binary neural approach

机译:标准拼写检查算法与新型二进制神经方法的比较

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a simple, flexible, and efficient hybrid spell checking methodology based upon phonetic matching, supervised learning, and associative matching in the AURA neural system. We integrate Hamming Distance and n-gram algorithms that have high recall for typing errors and a phonetic spell-checking algorithm in a single novel architecture. Our approach is suitable for any spell checking application though aimed toward isolated word error correction, particularly spell checking user queries in a search engine. We use a novel scoring scheme to integrate the retrieved words from each spelling approach and calculate an overall score for each matched word. From the overall scores, we can rank the possible matches. We evaluate our approach against several benchmark spellchecking algorithms for recall accuracy. Our proposed hybrid methodology has the highest recall rate of the techniques evaluated. The method has a high recall rate and low-computational cost.
机译:在本文中,我们提出了一种简单,灵活,有效的混合拼写检查方法,该方法基于AURA神经系统中的语音匹配,监督学习和关联匹配。我们将Hamming Distance和n-gram算法整合在一起,在单个新颖的体系结构中具有很高的回溯率,可有效消除打字错误,并提供语音拼写检查算法。我们的方法适用于任何拼写检查应用程序,尽管其目标是隔离单词错误纠正,尤其是搜索引擎中的拼写检查用户查询。我们使用一种新颖的评分方案来整合从每种拼写方法中检索到的单词,并为每个匹配的单词计算总分。从总分中,我们可以对可能的比赛进行排名。我们根据几种基准的拼写检查算法评估我们的方法,以提高查全率。我们提出的混合方法在所评估的技术中具有最高的召回率。该方法召回率高,计算成本低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号