首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Efficient algorithms for large-scale temporal aggregation
【24h】

Efficient algorithms for large-scale temporal aggregation

机译:大规模时间聚合的高效算法

获取原文
获取原文并翻译 | 示例

摘要

The ability to model time-varying natures is essential to many database applications such as data warehousing and mining. However, the temporal aspects provide many unique characteristics and challenges for query processing and optimization. Among the challenges is computing temporal aggregates, which is complicated by having to compute temporal grouping. We introduce a variety of temporal aggregation algorithms that overcome major drawbacks of previous work. First, for small-scale aggregations, both the worst-case and average-case processing time have been improved significantly. Second, for large-scale aggregations, the proposed algorithms can deal with a database that is substantially larger than the size of available memory. Third, the parallel algorithm designed on a shared-nothing architecture achieves scalable performance by delivering nearly linear scale-up and speed-up, even at the presence of data skew. The contributions made in this paper are particularly important because the rate of increase in database size and response time requirements has out-paced advancements in processor and mass storage technology.
机译:对时变性质进行建模的能力对于许多数据库应用程序(例如数据仓库和挖掘)至关重要。但是,时间方面为查询处理和优化提供了许多独特的特性和挑战。挑战之一是计算时间聚合,这由于必须计算时间分组而变得很复杂。我们介绍了多种时间聚合算法,这些算法克服了先前工作的主要缺点。首先,对于小规模的聚合,最坏情况和平均情况下的处理时间都得到了显着改善。其次,对于大规模聚合,提出的算法可以处理比可用内存大得多的数据库。第三,无共享架构上设计的并行算法通过提供几乎线性的放大和加速,即使在存在数据倾斜的情况下,也可以实现可扩展的性能。本文所做的贡献特别重要,因为数据库大小和响应时间要求的增长速度已经超过了处理器和大容量存储技术的发展速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号