首页> 外文期刊>Distributed and Parallel Databases >Main Memory-Based Algorithms for Efficient Parallel Aggregation for Temporal Databases
【24h】

Main Memory-Based Algorithms for Efficient Parallel Aggregation for Temporal Databases

机译:基于主内存的时态数据库高效并行聚合算法

获取原文
获取原文并翻译 | 示例

摘要

The ability to model the temporal dimension is essential to many applications. Furthermore, the rate of increase in database size and stringency of response time requirements has out-paced advancements in processor and mass storage technology, leading to the need for parallel temporal database management systems. In this paper, we introduce a variety of parallel temporal aggregation algorithms for the shared-nothing architecture; these algorithms are based on the sequential Aggregation Tree algorithm. We are particularly interested in developing parallel algorithms that can maximally exploit available memory to quickly compute large-scale temporal aggregates without intermediate disk writes and reads. Via an empirical study, we found that the number of processing nodes, the partitioning of the data, the placement of results, and the degree of data reduction effected by the aggregation impacted the performance of the algorithms. For distributed result placement, we discovered that Greedy Time Division Merge was the obvious choice. For centralized results and high data reduction, Pair-wise Merge was preferred for a large number of processing nodes; for low data reduction, it only performed well up to 32 nodes. This led us to a centralized variant of Greedy Time Division Merge which was best for the remaining cases. We present a cost model that closely predicts the running time of Greedy Time Division Merge.
机译:对时间维度进行建模的能力对于许多应用程序至关重要。此外,数据库大小的增加速度和响应时间要求的严格性已经超过了处理器和大容量存储技术的进步,导致需要并行的临时数据库管理系统。在本文中,我们为无共享架构介绍了多种并行时间聚合算法;这些算法基于顺序聚合树算法。我们对开发并行算法特别感兴趣,该算法可以最大程度地利用可用内存来快速计算大规模时间聚合,而无需进行中间磁盘读写操作。通过一项实证研究,我们发现处理节点的数量,数据的划分,结果的放置以及聚合影响的数据缩减程度都影响了算法的性能。对于分布式结果放置,我们发现贪婪时分合并是显而易见的选择。为了获得集中的结果并减少大量数据,成对合并是大量处理节点的首选;为了减少数据减少,它最多只能执行32个节点。这使我们找到了“贪婪时分合并”的集中式变体,这是最适合其余情况的。我们提出一种成本模型,该模型可以紧密预测Greedy时分合并的运行时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号