首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A Joinless Approach for Mining Spatial Colocation Patterns
【24h】

A Joinless Approach for Mining Spatial Colocation Patterns

机译:一种空间连接模式挖掘的无连接方法

获取原文
获取原文并翻译 | 示例

摘要

Spatial colocations represent the subsets of features which are frequently located together in geographic space. Colocation pattern discovery presents challenges since spatial objects are embedded in a continuous space, whereas classical data is often discrete. A large fraction of the computation time is devoted to identifying the instances of colocation patterns. We propose a novel joinless approach for efficient colocation pattern mining. The joinless colocation mining algorithm uses an instance-lookup scheme instead of an expensive spatial or an instance join operation for identifying colocation instances. We prove the joinless algorithm is correct and complete in finding colocation rules. We also describe a partial join approach for a spatial data set often clustered in neighborhood areas. We provide the algebraic cost models to characterize the performance dominance zones of the joinless method and the partial join method with a current join-based colocation mining method, and compare their computational complexities. In the experimental evaluation, using synthetic and real-world data sets, our methods performed more efficiently than the join-based method and show more scalability in dense data.
机译:空间共置代表了经常在地理空间中一起定位的要素子集。由于空间对象被嵌入连续的空间中,而经典数据通常是离散的,因此共置模式发现提出了挑战。计算时间的很大一部分专用于识别共置模式的实例。我们提出了一种有效的共置模式挖掘的新型无连接方法。无联接共置挖掘算法使用实例查找方案代替昂贵的空间或实例联接操作来识别共置实例。我们证明了无连接算法在寻找代管规则方面是正确和完整的。我们还描述了通常聚集在邻域中的空间数据集的部分联接方法。我们提供了代数成本模型来表征无联接方法和部分联接方法的性能优势区域,以及当前基于联接的共置挖掘方法的性能优势区域,并比较它们的计算复杂性。在实验评估中,使用合成数据和真实数据集,我们的方法比基于联接的方法执行得更有效,并且在密集数据中显示出更大的可伸缩性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号