首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Enhancing knowledge discovery via association-based evolution of neural logic networks
【24h】

Enhancing knowledge discovery via association-based evolution of neural logic networks

机译:通过基于关联的神经逻辑网络进化来增强知识发现

获取原文
获取原文并翻译 | 示例

摘要

The comprehensibility aspect of rule discovery is of emerging interest in the realm of knowledge discovery in databases. Of the many cognitive and psychological factors relating the comprehensibility of knowledge, we focus on the use of human amenable concepts as a representation language in expressing classification rules. Existing work in neural logic networks (or neulonets) provides impetus for our research; its strength lies in its ability to learn and represent complex human logic in decision-making using symbolic-interpretable net rules. A novel technique is developed for neulonet learning by composing net rules using genetic programming. Coupled with a sequential covering approach for generating a list of neulonets, the straightforward extraction of human-like logic rules from each neulonet provides an alternate perspective to the greater extent of knowledge that can potentially be expressed and discovered, while the entire list of neulonets together constitute an effective classifier. We show how the sequential covering approach is analogous to association-based classification, leading to the development of an association-based neulonet classifier. Empirical study shows that associative classification integrated with the genetic construction of neulonets performs better than general association-based classifiers in terms of higher accuracies and smaller rule sets. This is due to the richness in logic expression inherent in the neulonet learning paradigm.
机译:规则发现的可理解性方面在数据库中的知识发现领域中引起了新的兴趣。在与知识的可理解性相关的许多认知和心理因素中,我们集中于使用人类可适应的概念作为表示分类规则的表示语言。神经逻辑网络(或神经元网络)中的现有工作为我们的研究提供了动力。它的优势在于它能够使用符号可解释的网络规则来学习和代表复杂的人类逻辑进行决策。通过使用遗传程序编写网络规则,开发了一种用于神经元学习的新技术。结合用于生成神经元列表的顺序覆盖方法,可以从每个神经元中直接提取类人逻辑规则,从而提供了一种替代的视角,可以更广泛地表达和发现知识,而整个神经元列表在一起构成有效的分类器。我们展示了顺序覆盖方法如何类似于基于关联的分类,从而导致了基于关联的神经元分类器的发展。实证研究表明,在较高准确度和较小规则集方面,结合分类与神经元基因的遗传构造的性能要优于基于一般关联的分类器。这是由于神经元学习范例固有的逻辑表达方式丰富。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号