首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Random projection-based multiplicative data perturbation for privacy preserving distributed data mining
【24h】

Random projection-based multiplicative data perturbation for privacy preserving distributed data mining

机译:基于随机投影的可乘数据扰动用于隐私保护的分布式数据挖掘

获取原文
获取原文并翻译 | 示例

摘要

This paper explores the possibility of using multiplicative random projection matrices for privacy preserving distributed data mining. It specifically considers the problem of computing statistical aggregates like the inner product matrix, correlation coefficient matrix, and Euclidean distance matrix from distributed privacy sensitive data possibly owned by multiple parties. This class of problems is directly related to many other data-mining problems such as clustering, principal component analysis, and classification. This paper makes primary contributions on two different grounds. First, it explores independent component analysis as a possible tool for breaching privacy in deterministic multiplicative perturbation-based models such as random orthogonal transformation and random rotation. Then, it proposes an approximate random projection-based technique to improve the level of privacy protection while still preserving certain statistical characteristics of the data. The paper presents extensive theoretical analysis and experimental results. Experiments demonstrate that the proposed technique is effective and can be successfully used for different types of privacy-preserving data mining applications.
机译:本文探讨了使用乘法随机投影矩阵进行隐私保护的分布式数据挖掘的可能性。它特别考虑了根据可能由多方拥有的分布式隐私敏感数据来计算统计聚合(例如内积矩阵,相关系数矩阵和欧几里得距离矩阵)的问题。这类问题与许多其他数据挖掘问题直接相关,例如聚类,主成分分析和分类。本文基于两个不同的方面做出了主要贡献。首先,它探讨了独立成分分析作为在确定性乘性摄动为基础的模型(例如随机正交变换和随机旋转)中破坏隐私的一种可能工具。然后,它提出了一种基于近似随机投影的技术,以提高隐私保护的水平,同时仍保留数据的某些统计特征。本文提出了广泛的理论分析和实验结果。实验表明,该技术是有效的,可以成功地用于不同类型的隐私保护数据挖掘应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号