首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Bayesian Networks for Knowledge-Based Authentication
【24h】

Bayesian Networks for Knowledge-Based Authentication

机译:贝叶斯网络用于基于知识的身份验证

获取原文
获取原文并翻译 | 示例

摘要

Knowledge-based authentication (KBA) has gained prominence as a user authentication method for electronic transactions. This paper presents a Bayesian network model of KBA grounded in probabilistic reasoning and information theory. The probabilistic semantics of the model parameters naturally lead to the definitions of two key KBA metrics驴guessability and memorability. The statistical modeling approach allows parameter estimation using methods such as the maximum likelihood estimator (MLE). The information-theoretic view helps to derive the closed-form solutions to estimating the guessability and guessing entropy metrics. The results related to KBA metrics and the models under different attacking strategies and factoid distributions are unified under a game-theoretic framework that yields lower and upper bounds of optimal guessability. The paper also proposes a methodology for implementing a Bayesian network-based KBA system. Further, an empirical evaluation of the relative merits of two Bayesian network structures for KBA, the Naive Bayes (NB) and the Tree Augmented Naive Bayes (TAN), confirms the hypothesis that the TAN structure is superior in terms of authentication accuracy and error rates. The results of the theoretical analysis and the empirical study provide insights into the KBA design problem and establish a foundation for future research in the KBA area.
机译:基于知识的身份验证(KBA)作为电子交易的用户身份验证方法而倍受关注。本文提出了基于概率推理和信息论的KBA贝叶斯网络模型。模型参数的概率语义自然导致了两个关键KBA度量的定义:可猜测性和可记忆性。统计建模方法允许使用诸如最大似然估计器(MLE)之类的方法进行参数估计。信息理论视图有助于导出封闭形式的解决方案,以估计可猜测性和猜测熵度量。在不同的攻击策略和事实分布下,与KBA度量和模型相关的结果在一个博弈论框架下得到统一,从而产生了最佳可猜测性的上下限。本文还提出了一种用于实现基于贝叶斯网络的KBA系统的方法。此外,对KBA的两个贝叶斯网络结构,朴素贝叶斯(NB)和树增强朴素贝叶斯(TAN)的相对优缺点的经验评估,证实了TAN结构在身份验证准确性和错误率方面优越的假设。 。理论分析和实证研究的结果为KBA设计问题提供了见识,并为KBA领域的未来研究奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号