【24h】

A Novel Bayes Model: Hidden Naive Bayes

机译:一种新颖的贝叶斯模型:隐藏的朴素贝叶斯

获取原文
获取原文并翻译 | 示例

摘要

Because learning an optimal Bayesian network classifier is an NP-hard problem, learning-improved naive Bayes has attracted much attention from researchers. In this paper, we summarize the existing improved algorithms and propose a novel Bayes model: hidden naive Bayes (HNB). In HNB, a hidden parent is created for each attribute which combines the influences from all other attributes. We experimentally test HNB in terms of classification accuracy, using the 36 UCI data sets selected by Weka, and compare it to naive Bayes (NB), selective Bayesian classifiers (SBC), naive Bayes tree (NBTree), tree-augmented naive Bayes (TAN), and averaged one-dependence estimators (AODE). The experimental results show that HNB significantly outperforms NB, SBC, NBTree, TAN, and AODE. In many data mining applications, an accurate class probability estimation and ranking are also desirable. We study the class probability estimation and ranking performance, measured by conditional log likelihood (CLL) and the area under the ROC curve (AUC), respectively, of naive Bayes and its improved models, such as SBC, NBTree, TAN, and AODE, and then compare HNB to them in terms of CLL and AUC. Our experiments show that HNB also significantly outperforms all of them.
机译:由于学习最佳贝叶斯网络分类器是一个NP难题,因此学习改进的朴素贝叶斯吸引了研究人员的极大关注。在本文中,我们总结了现有的改进算法,并提出了一种新颖的贝叶斯模型:隐藏朴素贝叶斯(HNB)。在HNB中,将为每个属性创建一个隐藏的父级,将来自所有其他属性的影响合并在一起。我们使用Weka选择的36个UCI数据集对HNB进行分类准确性的实验测试,并将其与朴素贝叶斯(NB),选择性贝叶斯分类器(SBC),朴素贝叶斯树(NBTree),树增强朴素贝叶斯( TAN),并求平均的单依赖估计量(AODE)。实验结果表明,HNB的性能明显优于NB,SBC,NBTree,TAN和AODE。在许多数据挖掘应用中,还需要准确的类别概率估计和排名。我们分别研究了朴素贝叶斯及其改进模型(如SBC,NBTree,TAN和AODE)的类概率估计和排名性能,分别通过条件对数似然(CLL)和ROC曲线下面积(AUC)进行衡量,然后根据CLL和AUC将HNB与它们进行比较。我们的实验表明,HNB的性能也明显优于所有其他产品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号