机译:通过语言修饰语的正则化提取具有可解释子模型的Takagi-Sugeno模糊规则
Dept. of Inf., De Montfort Univ., Leicester;
fuzzy set theory; fuzzy systems; knowledge based systems; learning (artificial intelligence); QR decomposition method; Takagi-Sugeno fuzzy rules; Takagi-Sugeno fuzzy system; fuzzy models; fuzzy sets; global model; good submodel interpretability; input space partitioning; interpretable submodels; linguistic modifiers; membership functions; model objective function; parsimonious rule bases; regularization learning algorithm; system behaviors; Interpretability; Knowledge extraction; Takagi-Sugeno fuzzy models; comprehensibility; distinguishability; fuzziness.; linearization; local linear models; local models; regularization; submodels; transparency;
机译:基于语言模糊规则的系统的可解释性:可解释性度量的概述
机译:Fuzzy-ROSA方法:从基于规则的统计分析到基于数据的可解释的Takagi-Sugeno系统生成
机译:语言上可解释的基于模糊规则的分类器的设计:简短回顾和未解决的问题
机译:通过使用语言修饰语和多目标学习方案来提高Takagi-Sugeno模糊模型的可解释性
机译:提取模糊规则以比较遗传算法生成的Motoneuron模型
机译:基于语言模糊规则的系统在人工世界中集体行为的演变
机译:语言规则基础的真实语义解释性和模糊系统的近似推理方法
机译:通过粗糙集提取模糊规则并在不确定条件下提取模糊规则并使用粗糙集测量可定义性来测量不确定性