首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Predicting Missing Items in Shopping Carts
【24h】

Predicting Missing Items in Shopping Carts

机译:预测购物车中缺少的物品

获取原文
获取原文并翻译 | 示例

摘要

Existing research in association mining has focused mainly on how to expedite the search for frequently co-occurring groups of items in ȁC;shopping cartȁD; type of transactions; less attention has been paid to methods that exploit these ȁC;frequent itemsetsȁD; for prediction purposes. This paper contributes to the latter task by proposing a technique that uses partial information about the contents of a shopping cart for the prediction of what else the customer is likely to buy. Using the recently proposed data structure of itemset trees (IT-trees), we obtain, in a computationally efficient manner, all rules whose antecedents contain at least one item from the incomplete shopping cart. Then, we combine these rules by uncertainty processing techniques, including the classical Bayesian decision theory and a new algorithm based on the Dempster-Shafer (DS) theory of evidence combination.
机译:关联挖掘中的现有研究主要集中在如何加快在ȁC,购物车ȁD,购物车ȁD中频繁出现的物品组的搜索上。交易类型;对利用这些ȁC,频繁项目集ȁD的方法的关注较少。用于预测目的。本文通过提出一种技术来为后一个任务做出贡献,该技术使用有关购物车内容的部分信息来预测客户可能还会购买什么。使用最近提出的项目集树(IT树)的数据结构,我们以有效的计算方式,从不完整的购物车中获取其前因至少包含一项的所有规则。然后,我们通过不确定性处理技术(包括经典贝叶斯决策理论和基于Dempster-Shafer(DS)证据组合理论的新算法)将这些规则进行组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号