首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Multiscale Representations for Fast Pattern Matching in Stream Time Series
【24h】

Multiscale Representations for Fast Pattern Matching in Stream Time Series

机译:流时间序列中快速模式匹配的多尺度表示

获取原文
获取原文并翻译 | 示例

摘要

Similarity-based time series retrieval has been a subject of long term study due to its wide usage in many applications, such as financial data analysis and weather data forecasting. Its original task was to find those time series similar to a pattern time series data, where both the pattern and data time series are static. Recently, with an increasing demand on stream data management, similarity-based stream time series retrieval has raised new research issues due to its unique requirements during the stream processing, such as one-pass search and fast response. In this paper, we address the problem of matching both static and dynamic patterns over stream time series data. We will develop a novel multi-scale representation, called multi-scale segment mean (MSM), for stream time series data, which can be incrementally computed and thus perfectly adapted to the stream characteristics. Most importantly, we propose a novel multi-step filtering mechanism, SS, over the multi-scale representation. Analysis indicates that the mechanism can greatly prune the search space and thus offer fast response. Furthermore, batching processing optimization, the dynamic case where patterns are also from stream time series, and pattern matching over future stream time series are also discussed. Extensive experiments show the proposed scheme can efficiently filter out false candidates and detect patterns.
机译:由于基于相似度的时间序列检索在金融数据分析和天气预报等许多应用中得到了广泛的应用,因此一直是长期研究的主题。它的原始任务是找到类似于模式时间序列数据的那些时间序列,其中模式和数据时间序列都是静态的。近年来,随着对流数据管理的需求不断增长,基于相似度的流时间序列检索由于其在流处理过程中的独特要求(例如单遍搜索和快速响应)而引起了新的研究问题。在本文中,我们解决了在流时间序列数据上同时匹配静态和动态模式的问题。我们将为流时间序列数据开发一种新颖的多尺度表示形式,称为多尺度分段均值(MSM),可以逐步计算并因此完全适应流特征。最重要的是,我们提出了一种针对多尺度表示的新颖的多步滤波机制SS。分析表明,该机制可以大大减少搜索空间,从而提供快速响应。此外,还讨论了批处理优化,模式也来自流时间序列的动态情况以及未来流时间序列的模式匹配。大量实验表明,该方案可以有效地过滤掉虚假的候选者并检测出模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号