首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Deriving Concept-Based User Profiles from Search Engine Logs
【24h】

Deriving Concept-Based User Profiles from Search Engine Logs

机译:从搜索引擎日志中导出基于概念的用户配置文件

获取原文
获取原文并翻译 | 示例

摘要

User profiling is a fundamental component of any personalization applications. Most existing user profiling strategies are based on objects that users are interested in (i.e., positive preferences), but not the objects that users dislike (i.e., negative preferences). In this paper, we focus on search engine personalization and develop several concept-based user profiling methods that are based on both positive and negative preferences. We evaluate the proposed methods against our previously proposed personalized query clustering method. Experimental results show that profiles which capture and utilize both of the user's positive and negative preferences perform the best. An important result from the experiments is that profiles with negative preferences can increase the separation between similar and dissimilar queries. The separation provides a clear threshold for an agglomerative clustering algorithm to terminate and improve the overall quality of the resulting query clusters.
机译:用户配置文件是任何个性化应用程序的基本组成部分。现有的大多数用户配置策略都是基于用户感兴趣的对象(即积极偏好),而不是基于用户不喜欢的对象(即消极偏好)。在本文中,我们专注于搜索引擎的个性化,并开发了几种基于正面和负面偏好的基于概念的用户配置方法。我们针对我们先前提出的个性化查询聚类方法评估提出的方法。实验结果表明,可以同时捕获和利用用户的正面和负面偏好的配置文件表现最佳。实验的重要结果是,具有负面偏好的配置文件可以增加相似查询和不相似查询之间的间隔。分离为聚集聚类算法终止和提高所得查询聚类的整体质量提供了明确的阈值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号