首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Classification and Novel Class Detection in Concept-Drifting Data Streams under Time Constraints
【24h】

Classification and Novel Class Detection in Concept-Drifting Data Streams under Time Constraints

机译:时间约束下概念抽取数据流中的分类和新颖的类检测

获取原文
获取原文并翻译 | 示例

摘要

Most existing data stream classification techniques ignore one important aspect of stream data: arrival of a novel class. We address this issue and propose a data stream classification technique that integrates a novel class detection mechanism into traditional classifiers, enabling automatic detection of novel classes before the true labels of the novel class instances arrive. Novel class detection problem becomes more challenging in the presence of concept-drift, when the underlying data distributions evolve in streams. In order to determine whether an instance belongs to a novel class, the classification model sometimes needs to wait for more test instances to discover similarities among those instances. A maximum allowable wait time T_c is imposed as a time constraint to classify a test instance. Furthermore, most existing stream classification approaches assume that the true label of a data point can be accessed immediately after the data point is classified. In reality, a time delay T_l is involved in obtaining the true label of a data point since manual labeling is time consuming. We show how to make fast and correct classification decisions under these constraints and apply them to real benchmark data. Comparison with state-of-the-art stream classification techniques prove the superiority of our approach.
机译:现有的大多数数据流分类技术都忽略了流数据的一个重要方面:新颖类的到来。我们解决了这个问题,并提出了一种数据流分类技术,该技术将新颖的类检测机制集成到传统的分类器中,从而能够在新颖的类实例的真实标签到达之前自动检测新颖的类。当基础数据分布在流中发展时,新的类检测问题在概念漂移的情况下变得更具挑战性。为了确定实例是否属于新类,分类模型有时需要等待更多的测试实例才能发现这些实例之间的相似性。施加最大允许的等待时间T_c作为对测试实例进行分类的时间限制。此外,大多数现有的流分类方法都假设在对数据点进行分类之后可以立即访问该数据点的真实标签。实际上,由于手动标记是费时的,所以在获得数据点的真实标记中涉及时间延迟T_1。我们展示了如何在这些约束条件下做出快速正确的分类决策,并将其应用于实际基准数据。与最新的流分类技术进行比较证明了我们方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号