首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Efficient Relevance Feedback for Content-Based Image Retrieval by Mining User Navigation Patterns
【24h】

Efficient Relevance Feedback for Content-Based Image Retrieval by Mining User Navigation Patterns

机译:通过挖掘用户导航模式进行基于内容的图像检索的有效相关性反馈

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, content-based image retrieval (CBIR) is the mainstay of image retrieval systems. To be more profitable, relevance feedback techniques were incorporated into CBIR such that more precise results can be obtained by taking user's feedbacks into account. However, existing relevance feedback-based CBIR methods usually request a number of iterative feedbacks to produce refined search results, especially in a large-scale image database. This is impractical and inefficient in real applications. In this paper, we propose a novel method, Navigation-Pattern-based Relevance Feedback (NPRF), to achieve the high efficiency and effectiveness of CBIR in coping with the large-scale image data. In terms of efficiency, the iterations of feedback are reduced substantially by using the navigation patterns discovered from the user query log. In terms of effectiveness, our proposed search algorithm NPRFSearch makes use of the discovered navigation patterns and three kinds of query refinement strategies, Query Point Movement (QPM), Query Reweighting (QR), and Query Expansion (QEX), to converge the search space toward the user's intention effectively. By using NPRF method, high quality of image retrieval on RF can be achieved in a small number of feedbacks. The experimental results reveal that NPRF outperforms other existing methods significantly in terms of precision, coverage, and number of feedbacks.
机译:如今,基于内容的图像检索(CBIR)是图像检索系统的主体。为了提高收益,相关反馈技术已被纳入CBIR,从而可以通过考虑用户的反馈来获得更精确的结果。但是,现有的基于相关性反馈的CBIR方法通常需要大量的迭代反馈来产生精确的搜索结果,尤其是在大型图像数据库中。在实际应用中,这是不切实际且效率低下的。在本文中,我们提出了一种新的方法,即基于导航模式的相关性反馈(NPRF),以实现CBIR在处理大规模图像数据方面的高效率和有效性。在效率方面,通过使用从用户查询日志中发现的导航模式,可以大大减少反馈的迭代次数。在有效性方面,我们提出的搜索算法NPRFSearch利用发现的导航模式和三种查询细化策略,即查询点移动(QPM),查询权重(QR)和查询扩展(QEX)来收敛搜索空间有效地满足用户的意图。通过使用NPRF方法,可以在少量反馈中实现高质量的RF图像检索。实验结果表明,NPRF在准确性,覆盖范围和反馈数量方面明显优于其他现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号