首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Temporal Data Clustering via Weighted Clustering Ensemble with Different Representations
【24h】

Temporal Data Clustering via Weighted Clustering Ensemble with Different Representations

机译:通过具有不同表示形式的加权聚类集合进行时间数据聚类

获取原文
获取原文并翻译 | 示例

摘要

Temporal data clustering provides underpinning techniques for discovering the intrinsic structure and condensing information over temporal data. In this paper, we present a temporal data clustering framework via a weighted clustering ensemble of multiple partitions produced by initial clustering analysis on different temporal data representations. In our approach, we propose a novel weighted consensus function guided by clustering validation criteria to reconcile initial partitions to candidate consensus partitions from different perspectives, and then, introduce an agreement function to further reconcile those candidate consensus partitions to a final partition. As a result, the proposed weighted clustering ensemble algorithm provides an effective enabling technique for the joint use of different representations, which cuts the information loss in a single representation and exploits various information sources underlying temporal data. In addition, our approach tends to capture the intrinsic structure of a data set, e.g., the number of clusters. Our approach has been evaluated with benchmark time series, motion trajectory, and time-series data stream clustering tasks. Simulation results demonstrate that our approach yields favorite results for a variety of temporal data clustering tasks. As our weighted cluster ensemble algorithm can combine any input partitions to generate a clustering ensemble, we also investigate its limitation by formal analysis and empirical studies.
机译:时态数据聚类为发现内在结构和在时态数据上压缩信息提供了基础技术。在本文中,我们通过对不同时间数据表示形式进行初始聚类分析而产生的多个分区的加权聚类集合,提出了一个时间数据聚类框架。在我们的方法中,我们提出了一种新的加权共识函数,该函数以聚类验证标准为指导,从不同角度将初始分区与候选共识分区进行调和,然后引入一个协议函数,以进一步将那些候选共识分区与最终分区进行调和。结果,所提出的加权聚类集成算法为不同表示的联合使用提供了一种有效的使能技术,该技术减少了单个表示中的信息丢失,并利用了基于时间数据的各种信息源。另外,我们的方法倾向于捕获数据集的固有结构,例如聚类数。我们的方法已通过基准时间序列,运动轨迹和时间序列数据流聚类任务进行了评估。仿真结果表明,对于各种时间数据聚类任务,我们的方法都能获得理想的结果。由于我们的加权聚类集成算法可以组合任何输入分区以生成聚类集成,因此我们还通过形式分析和实证研究来研究其局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号