首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Subscriber Assignment for Wide-Area Content-Based Publish/Subscribe
【24h】

Subscriber Assignment for Wide-Area Content-Based Publish/Subscribe

机译:广域基于内容的发布/订阅的订阅者分配

获取原文
获取原文并翻译 | 示例

摘要

We study the problem of assigning subscribers to brokers in a wide-area content-based publish/subscribe system. A good assignment should consider both subscriber interests in the event space and subscriber locations in the network space, and balance multiple performance criteria including bandwidth, delay, and load balance. The resulting optimization problem is NP-complete, so systems have turned to heuristics and/or simpler algorithms that ignore some performance criteria. Evaluating these approaches has been challenging because optimal solutions remain elusive for realistic problem sizes. To enable proper evaluation, we develop a Monte Carlo approximation algorithm with good theoretical properties and robustness to workload variations. To make it computationally feasible, we combine the ideas of linear programming, randomized rounding, coreset, and iterative reweighted sampling. We demonstrate how to use this algorithm as a yardstick to evaluate other algorithms, and why it is better than other choices of yardsticks. With its help, we show that a simple greedy algorithm works well for a number of workloads, including one generated from publicly available statistics on Google Groups. We hope that our algorithms are not only useful in their own right, but our principled approach toward evaluation will also be useful in future evaluation of solutions to similar problems in content-based publish/subscribe.
机译:我们研究了在基于内容的广域发布/订阅系统中将订户分配给经纪人的问题。良好的分配应同时考虑事件空间中的订户兴趣和网络空间中的订户位置,并平衡多个性能标准,包括带宽,延迟和负载平衡。由此产生的优化问题是NP完全的,因此系统已经转向忽略某些性能标准的启发式算法和/或更简单的算法。评估这些方法具有挑战性,因为对于现实的问题大小,最佳解决方案仍然遥不可及。为了能够进行适当的评估,我们开发了一种具有良好的理论属性和对工作负载变化的鲁棒性的蒙特卡洛近似算法。为了使其在计算上可行,我们结合了线性规划,随机取整,核集和迭代加权采样的思想。我们演示了如何使用此算法作为衡量其他算法的标准,以及为什么它比其他选择的标准更好。借助它的帮助,我们证明了一种简单的贪心算法可以很好地应对许多工作负载,其中包括根据Google网上论坛的公开统计信息生成的工作负载。我们希望我们的算法不仅本身有用,而且我们的评估原则也将对将来基于内容的发布/订阅中类似问题的解决方案评估有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号