首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Efficiently Indexing Large Sparse Graphs for Similarity Search
【24h】

Efficiently Indexing Large Sparse Graphs for Similarity Search

机译:有效索引大型稀疏图以进行相似性搜索

获取原文
获取原文并翻译 | 示例

摘要

The graph structure is a very important means to model schemaless data with complicated structures, such as protein-protein interaction networks, chemical compounds, knowledge query inferring systems, and road networks. This paper focuses on the index structure for similarity search on a set of large sparse graphs and proposes an efficient indexing mechanism by introducing the Q-Gram idea. By decomposing graphs to small grams (organized by κ-Adjacent Tree patterns) and pairing-up on those κ-Adjacent Tree patterns, the lower bound estimation of their edit distance can be calculated for candidate filtering. Furthermore, we have developed a series of techniques for inverted index construction and online query processing. By building the candidate set for the query graph before the exact edit distance calculation, the number of graphs need to proceed into exact matching can be greatly reduced. Extensive experiments on real and synthetic data sets have been conducted to show the effectiveness and efficiency of the proposed indexing mechanism.
机译:图形结构是对具有复杂结构的无模式数据进行建模的非常重要的手段,例如蛋白质-蛋白质相互作用网络,化学化合物,知识查询推断系统和道路网络。本文着眼于在一组大型稀疏图上进行相似性搜索的索引结构,并通过引入Q-Gram思想提出了一种有效的索引机制。通过将图分解为小克(由κ相邻树模式组织)并在这些κ相邻树模式上配对,可以计算出它们的编辑距离的下界估计值,以进行候选过滤。此外,我们已经开发了一系列用于倒排索引构建和在线查询处理的技术。通过在精确编辑距离计算之前构建查询图的候选集,可以大大减少进行精确匹配所需的图数。已经对真实和综合数据集进行了广泛的实验,以证明所提出的索引机制的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号