首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Distributed Autonomous Online Learning: Regrets and Intrinsic Privacy-Preserving Properties
【24h】

Distributed Autonomous Online Learning: Regrets and Intrinsic Privacy-Preserving Properties

机译:分布式自主在线学习:遗憾和固有的隐私保护属性

获取原文
获取原文并翻译 | 示例

摘要

Online learning has become increasingly popular on handling massive data. The sequential nature of online learning, however, requires a centralized learner to store data and update parameters. In this paper, we consider online learning with distributed data sources. The autonomous learners update local parameters based on local data sources and periodically exchange information with a small subset of neighbors in a communication network. We derive the regret bound for strongly convex functions that generalizes the work by Ram et al. for convex functions. More importantly, we show that our algorithm has intrinsic privacy-preserving properties, and we prove the sufficient and necessary conditions for privacy preservation in the network. These conditions imply that for networks with greater-than-one connectivity, a malicious learner cannot reconstruct the subgradients (and sensitive raw data) of other learners, which makes our algorithm appealing in privacy-sensitive applications.
机译:在线学习在处理海量数据方面变得越来越流行。但是,在线学习的顺序性质要求集中式学习者存储数据和更新参数。在本文中,我们考虑使用分布式数据源进行在线学习。自主学习者基于本地数据源更新本地参数,并定期与通信网络中一小部分邻居交换信息。我们得出了强凸函数的后悔界限,该函数使Ram等人的工作得以推广。用于凸函数。更重要的是,我们证明了我们的算法具有内在的隐私保护特性,并且证明了网络中隐私保护的充分必要条件。这些条件意味着对于具有大于一个连接性的网络,恶意学习者无法重建其他学习者的子梯度(和敏感的原始数据),这使得我们的算法在对隐私敏感的应用程序中具有吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号