首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >iLike: Bridging the Semantic Gap in Vertical Image Search by Integrating Text and Visual Features
【24h】

iLike: Bridging the Semantic Gap in Vertical Image Search by Integrating Text and Visual Features

机译:iLike:通过集成文本和视觉功能缩小垂直图像搜索中的语义差距

获取原文
获取原文并翻译 | 示例

摘要

With the development of Internet and Web 2.0, large-volume multimedia contents have been made available online. It is highly desired to provide easy accessibility to such contents, i.e., efficient and precise retrieval of images that satisfies users' needs. Toward this goal, content-based image retrieval (CBIR) has been intensively studied in the research community, while text-based search is better adopted in the industry. Both approaches have inherent disadvantages and limitations. Therefore, unlike the great success of text search, web image search engines are still premature. In this paper, we present iLike, a vertical image search engine that integrates both textual and visual features to improve retrieval performance. We bridge the semantic gap by capturing the meaning of each text term in the visual feature space, and reweight visual features according to their significance to the query terms. We also bridge the user intention gap because we are able to infer the "visual meanings" behind the textual queries. Last but not least, we provide a visual thesaurus, which is generated from the statistical similarity between the visual space representation of textual terms. Experimental results show that our approach improves both precision and recall, compared with content-based or text-based image retrieval techniques. More importantly, search results from iLike is more consistent with users' perception of the query terms.
机译:随着Internet和Web 2.0的发展,在线提供了大量的多媒体内容。高度希望提供对这些内容的容易访问性,即,满足用户需求的图像的有效和精确检索。为了实现这一目标,研究社区已对基于内容的图像检索(CBIR)进行了深入研究,而基于文本的搜索则在业界得到了更好的采用。两种方法都有其固有的缺点和局限性。因此,与文本搜索的巨大成功不同,Web图像搜索引擎仍为时过早。在本文中,我们介绍了iLike,这是一种垂直图像搜索引擎,集成了文本和视觉功能,可提高检索性能。我们通过捕获视觉特征空间中每个文本术语的含义来弥合语义鸿沟,并根据视觉特征对查询术语的重要性重新加权视觉特征。我们还弥合了用户意图差距,因为我们能够推断出文本查询背后的“视觉含义”。最后但并非最不重要的一点是,我们提供了一个视觉词库,它是由文本术语的视觉空间表示之间的统计相似性生成的。实验结果表明,与基于内容或基于文本的图像检索技术相比,我们的方法可以提高准确性和查全率。更重要的是,iLike的搜索结果与用户对查询词的理解更加一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号