首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >KSQ: Top-$(k)$ Similarity Query on Uncertain Trajectories
【24h】

KSQ: Top-$(k)$ Similarity Query on Uncertain Trajectories

机译:KSQ:不确定轨迹的前$(k)$个相似性查询

获取原文
获取原文并翻译 | 示例

摘要

Similarity search on spatiotemporal trajectories has a wide range of applications. Most of existing research focuses on certain trajectories. However, trajectories often are uncertain due to various factors, for example, hardware limitations and privacy concerns. In this paper, we introduce p-distance, a novel and adaptive measure that is able to quantify the dissimilarity between two uncertain trajectories. Based on this measure of dissimilarity, we define top-$(k)$ similarity query (KSQ) on uncertain trajectories. A KSQ returns the $(k)$ trajectories that are most similar to a given trajectory in terms of p-distance. To process such queries efficiently, we design UTgrid for indexing uncertain trajectories and develop query processing algorithms that make use of UTgrid for effective pruning. We conduct an extensive experimental study on both synthetic and real data sets. The results indicate that UTgrid is an effective indexing method for similarity search on uncertain trajectories. Our query processing using UTgrid dramatically improves the query performance and scales well in terms of query time and I/O.
机译:时空轨迹的相似度搜索具有广泛的应用。现有的研究大多集中在某些轨迹上。但是,由于各种因素(例如,硬件限制和隐私问题),轨迹通常是不确定的。在本文中,我们介绍了p距离,这是一种新颖的自适应度量,能够量化两个不确定轨迹之间的差异。基于这种相似性度量,我们在不确定轨迹上定义了top-(k)$相似性查询(KSQ)。 KSQ返回就p距离而言最类似于给定轨迹的$(k)$轨迹。为了有效地处理此类查询,我们设计了UTgrid来为不确定的轨迹建立索引,并开发了利用UTgrid进行有效修剪的查询处理算法。我们对综合和真实数据集进行了广泛的实验研究。结果表明,UTgrid是一种用于不确定轨迹相似搜索的有效索引方法。我们使用UTgrid的查询处理极大地提高了查询性能,并在查询时间和I / O方面很好地扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号