首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >On Generalizable Low False-Positive Learning Using Asymmetric Support Vector Machines
【24h】

On Generalizable Low False-Positive Learning Using Asymmetric Support Vector Machines

机译:基于不对称支持向量机的广义低假正学习

获取原文
获取原文并翻译 | 示例

摘要

The Support Vector Machines (SVMs) have been widely used for classification due to its ability to give low generalization error. In many practical applications of classification, however, the wrong prediction of a certain class is much severer than that of the other classes, making the original SVM unsatisfactory. In this paper, we propose the notion of Asymmetric Support Vector Machine (ASVM), an asymmetric extension of the SVM, for these applications. Different from the existing SVM extensions such as thresholding and parameter tuning, ASVM employs a new objective that models the imbalance between the costs of false predictions from different classes in a novel way such that user tolerance on false-positive rate can be explicitly specified. Such a new objective formulation allows us of obtaining a lower false-positive rate without much degradation of the prediction accuracy or increase in training time. Furthermore, we show that the generalization ability is preserved with the new objective. We also study the effects of the parameters in ASVM objective and address some implementation issues related to the Sequential Minimal Optimization (SMO) to cope with large-scale data. An extensive simulation is conducted and shows that ASVM is able to yield either noticeable improvement in performance or reduction in training time as compared to the previous arts.
机译:支持向量机(SVM)由于具有低泛化误差的能力而被广泛用于分类。但是,在分类的许多实际应用中,某个类别的错误预测比其他类别的预测严重得多,从而使原始SVM不能令人满意。在本文中,我们针对这些应用提出了非对称支持向量机(ASVM)的概念,即SVM的非对称扩展。与现有的SVM扩展(例如阈值和参数调整)不同,ASVM采用新的目标,以新颖的方式对来自不同类别的错误预测的成本之间的不平衡进行建模,从而可以明确指定用户对错误阳性率的容忍度。这种新的客观表述使我们可以获得较低的假阳性率,而不会大大降低预测准确性或增加训练时间。此外,我们表明新的目标保留了泛化能力。我们还研究了参数在ASVM目标中的影响,并解决了与顺序最小优化(SMO)有关的一些实现问题,以应对大规模数据。进行了广泛的仿真,结果表明,与现有技术相比,ASVM能够显着提高性能或减少训练时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号