首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Finding Rare Classes: Active Learning with Generative and Discriminative Models
【24h】

Finding Rare Classes: Active Learning with Generative and Discriminative Models

机译:寻找稀有课程:通过生成和判别模型进行主动学习

获取原文
获取原文并翻译 | 示例

摘要

Discovering rare categories and classifying new instances of them are important data mining issues in many fields, but fully supervised learning of a rare class classifier is prohibitively costly in labeling effort. There has therefore been increasing interest both in active discovery: to identify new classes quickly, and active learning: to train classifiers with minimal supervision. These goals occur together in practice and are intrinsically related because examples of each class are required to train a classifier. Nevertheless, very few studies have tried to optimise them together, meaning that data mining for rare classes in new domains makes inefficient use of human supervision. Developing active learning algorithms to optimise both rare class discovery and classification simultaneously is challenging because discovery and classification have conflicting requirements in query criteria. In this paper, we address these issues with two contributions: a unified active learning model to jointly discover new categories and learn to classify them by adapting query criteria online; and a classifier combination algorithm that switches generative and discriminative classifiers as learning progresses. Extensive evaluation on a batch of standard UCI and vision data sets demonstrates the superiority of this approach over existing methods.
机译:在许多领域中,发现稀有类别并对新实例进行分类是重要的数据挖掘问题,但是在稀有类别分类器的完全监督学习过程中,标注工作的成本过高。因此,人们对主动发现(快速识别新班级)和主动学习(以最小的监督来训练分类器)的兴趣都在增加。这些目标在实践中一起出现,并且在本质上相关,因为训练分类器需要每个类别的示例。然而,很少有研究试图将它们优化在一起,这意味着在新领域中稀有类别的数据挖掘无法有效地利用人工监督。开发主动学习算法以同时优化稀有类别发现和分类具有挑战性,因为发现和分类在查询条件上有冲突的要求。在本文中,我们通过两个贡献解决了这些问题:一个统一的主动学习模型,可以共同发现新类别并通过在线调整查询条件来学习对它们进行分类;以及分类器组合算法,该算法可随着学习的进行而切换生成性和区分性分类器。对一批标准UCI和视觉数据集的广泛评估表明,该方法优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号