首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >An Unsupervised Feature Selection Framework for Social Media Data
【24h】

An Unsupervised Feature Selection Framework for Social Media Data

机译:社交媒体数据的无监督特征选择框架

获取原文
获取原文并翻译 | 示例

摘要

The explosive usage of social media produces massive amount of unlabeled and high-dimensional data. Feature selection has been proven to be effective in dealing with high-dimensional data for efficient learning and data mining. Unsupervised feature selection remains a challenging task due to the absence of label information based on which feature relevance is often assessed. The unique characteristics of social media data further complicate the already challenging problem of unsupervised feature selection, e.g., social media data is inherently linked, which makes invalid the independent and identically distributed assumption, bringing about new challenges to unsupervised feature selection algorithms. In this paper, we investigate a novel problem of feature selection for social media data in an unsupervised scenario. In particular, we analyze the differences between social media data and traditional attribute-value data, investigate how the relations extracted from linked data can be exploited to help select relevant features, and propose a novel unsupervised feature selection framework, LUFS, for linked social media data. We systematically design and conduct systemic experiments to evaluate the proposed framework on data sets from real-world social media websites. The empirical study demonstrates the effectiveness and potential of our proposed framework.
机译:社交媒体的爆炸性使用产生了大量未标记的高维度数据。事实证明,特征选择可有效处理高维数据,从而实现高效的学习和数据挖掘。由于缺少标签信息(通常基于该信息来评估相关性),因此无监督的特征选择仍然是一项艰巨的任务。社交媒体数据的独特特征进一步加剧了本已挑战性的无监督特征选择问题,例如,社交媒体数据固有地链接在一起,这使独立且均匀分布的假设无效,从而给无监督特征选择算法带来了新挑战。在本文中,我们研究了在无监督情况下社交媒体数据特征选择的一个新问题。特别是,我们分析了社交媒体数据与传统属性值数据之间的差异,研究了如何利用从链接数据中提取的关系来帮助选择相关特征,并为链接社交媒体提出了一种新颖的无监督特征选择框架LUFS数据。我们系统地设计和进行系统性实验,以评估来自现实世界社交媒体网站的数据集上提出的框架。实证研究证明了我们提出的框架的有效性和潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号