首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Runtime Optimizations for Tree-Based Machine Learning Models
【24h】

Runtime Optimizations for Tree-Based Machine Learning Models

机译:基于树的机器学习模型的运行时优化

获取原文
获取原文并翻译 | 示例

摘要

Tree-based models have proven to be an effective solution for web ranking as well as other machine learning problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, specifically using gradient-boosted regression trees for learning to rank. Although exceedingly simple conceptually, most implementations of tree-based models do not efficiently utilize modern superscalar processors. By laying out data structures in memory in a more cache-conscious fashion, removing branches from the execution flow using a technique called predication, and micro-batching predictions using a technique called vectorization, we are able to better exploit modern processor architectures. Experiments on synthetic data and on three standard learning-to-rank datasets show that our approach is significantly faster than standard implementations.
机译:基于树的模型已被证明是Web排名以及不同领域中其他机器学习问题的有效解决方案。本文着重于优化应用此类模型进行预测的运行时性能,尤其是使用梯度增强的回归树来学习排名。尽管从概念上讲极其简单,但是大多数基于树的模型的实现并未有效利用现代超标量处理器。通过以更具缓存意识的方式在内存中布置数据结构,使用称为谓词的技术从执行流中删除分支以及使用称为向量化的技术进行微分批预测,我们可以更好地利用现代处理器体系结构。在合成数据和三个标准的学习排名数据上进行的实验表明,我们的方法比标准实现要快得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号