首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Social Recommendation with Cross-Domain Transferable Knowledge
【24h】

Social Recommendation with Cross-Domain Transferable Knowledge

机译:跨域可转让知识的社会推荐

获取原文
获取原文并翻译 | 示例

摘要

Recommender systems can suffer from data sparsity and cold start issues. However, social networks, which enable users to build relationships and create different types of items, present an unprecedented opportunity to alleviate these issues. In this paper, we represent a social network as a star-structured hybrid graph centered on a social domain, which connects with other item domains. With this innovative representation, useful knowledge from an auxiliary domain can be transferred through the social domain to a target domain. Various factors of item transferability, including popularity and behavioral consistency, are determined. We propose a novel (HRW) method, which incorporates such factors, to select transferable items in auxiliary domains, bridge cross-domain knowledge with the social domain, and accurately predict user-item links in a target domain. Extensive experiments on a real social dataset demonstrate that HRW significantly outperforms existing approaches.
机译:推荐系统可能会遇到数据稀疏和冷启动问题。但是,使用户能够建立关系并创建不同类型项目的社交网络为缓解这些问题提供了前所未有的机会。在本文中,我们将社交网络表示为以社交域为中心的星形结构混合图,该社交域与其他项目域连接。通过这种创新的表示,可以将来自辅助领域的有用知识通过社交领域转移到目标领域。确定了项目可传递性的各种因素,包括受欢迎程度和行为一致性。我们提出了一种新颖的(HRW)方法,该方法结合了这些因素,可以选择辅助领域中的可转让项目,将跨领域知识与社交领域联系起来,并准确预测目标领域中的用户项链接。在真实的社交数据集上进行的大量实验表明,HRW明显优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号