首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >On the Upper Bounds of Spread for Greedy Algorithms in Social Network Influence Maximization
【24h】

On the Upper Bounds of Spread for Greedy Algorithms in Social Network Influence Maximization

机译:社会网络中贪婪算法传播的上限影响最大化

获取原文
获取原文并翻译 | 示例

摘要

Influence maximization, defined as finding a small subset of nodes that maximizes spread of influence in social networks, is NP-hard under both Independent Cascade (IC) and Linear Threshold (LT) models, where many greedy-based algorithms have been proposed with the best approximation guarantee. However, existing greedy-based algorithms are inefficient on large networks, as it demands heavy Monte-Carlo simulations of the spread functions for each node at the initial step . In this paper, we establish new upper bounds to significantly reduce the number of Monte-Carlo simulations in greedy-based algorithms, especially at the initial step. We theoretically prove that the bound is tight and convergent when the summation of weights towards (or from) each node is less than 1. Based on the bound, we propose a new algorithm ( in short) for discovering the top-k influential nodes in social networks. We test and compare UBLF with prior greedy algorithms, especially CELF . Experimental results show that UBLF reduces more than 95 percent Monte-Carlo simulations of CELF and achieves about times speedup when the seed set is small.
机译:在独立级联(IC)和线性阈值(LT)模型下,影响力最大化(定义为找到一小部分节点来最大化影响力在社交网络中的传播)是NP-hard的,其中许多基于贪婪性的算法已被提出。最佳逼近保证。然而,现有的基于贪婪的算法在大型网络上效率低下,因为它在开始时就需要对每个节点的扩展函数进行大量的蒙特卡洛仿真。在本文中,我们建立了新的上限,以显着减少基于贪婪的算法中的蒙特卡洛仿真次数,尤其是在初始步骤。从理论上讲,当朝向(或来自)每个节点的权重之和小于1时,边界是紧的且收敛的。基于边界,我们提出了一种新的算法(简而言之),用于发现节点中前k个有影响力的节点社交网络。我们将UBLF与先前的贪婪算法(尤其是CELF)进行测试和比较。实验结果表明,UBLF减少了超过95%的CELF蒙特卡洛模拟,当种子集较小时,达到了大约两倍的加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号