首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Disease Inference from Health-Related Questions via Sparse Deep Learning
【24h】

Disease Inference from Health-Related Questions via Sparse Deep Learning

机译:通过稀疏深度学习从与健康相关的问题中推断疾病

获取原文
获取原文并翻译 | 示例

摘要

Automatic disease inference is of importance to bridge the gap between what online health seekers with unusual symptoms need and what busy human doctors with biased expertise can offer. However, accurately and efficiently inferring diseases is non-trivial, especially for community-based health services due to the vocabulary gap, incomplete information, correlated medical concepts, and limited high quality training samples. In this paper, we first report a user study on the information needs of health seekers in terms of questions and then select those that ask for possible diseases of their manifested symptoms for further analytic. We next propose a novel deep learning scheme to infer the possible diseases given the questions of health seekers. The proposed scheme is comprised of two key components. The first globally mines the discriminant medical signatures from raw features. The second deems the raw features and their signatures as input nodes in one layer and hidden nodes in the subsequent layer, respectively. Meanwhile, it learns the inter-relations between these two layers via pre-training with pseudo-labeled data. Following that, the hidden nodes serve as raw features for the more abstract signature mining. With incremental and alternative repeating of these two components, our scheme builds a sparsely connected deep architecture with three hidden layers. Overall, it well fits specific tasks with fine-tuning. Extensive experiments on a real-world dataset labeled by online doctors show the significant performance gains of our scheme.
机译:自动疾病推断对于弥合具有异常症状的在线求医者和专业偏见的忙碌人类医生所能提供的内容之间的差距非常重要。但是,准确,有效地推断疾病并非易事,特别是对于基于社区的卫生服务而言,由于词汇量不足,信息不完整,相关的医学概念以及高质量的培训样本有限。在本文中,我们首先根据问题报告了有关求医者信息需求的用户研究,然后选择那些询问其所表现症状的可能疾病的人进行进一步分析。接下来,我们提出了一种新颖的深度学习方案,以根据健康寻求者的问题来推断可能的疾病。拟议的方案包括两个关键组成部分。第一个在全球范围内从原始特征中挖掘出可区分的医学特征。第二种方法将原始特征及其签名分别视为一层中的输入节点和下一层中的隐藏节点。同时,它通过使用伪标记数据进行预训练来了解这两层之间的相互关系。然后,隐藏的节点将用作更抽象的签名挖掘的原始功能。通过这两个组件的增量和替代重复,我们的方案构建了一个具有三个隐藏层的稀疏连接的深度架构。总体而言,它可以通过微调很好地适合特定任务。由在线医生标记的真实世界数据集上的大量实验表明,我们的方案显着提高了性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号