首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Resampling-Based Ensemble Methods for Online Class Imbalance Learning
【24h】

Resampling-Based Ensemble Methods for Online Class Imbalance Learning

机译:在线课程不平衡学习的基于重采样的集成方法

获取原文
获取原文并翻译 | 示例

摘要

Online class imbalance learning is a new learning problem that combines the challenges of both online learning and class imbalance learning. It deals with data streams having very skewed class distributions. This type of problems commonly exists in real-world applications, such as fault diagnosis of real-time control monitoring systems and intrusion detection in computer networks. In our earlier work, we defined class imbalance online, and proposed two learning algorithms OOB and UOB that build an ensemble model overcoming class imbalance in real time through resampling and time-decayed metrics. In this paper, we further improve the resampling strategy inside OOB and UOB, and look into their performance in both static and dynamic data streams. We give the first comprehensive analysis of class imbalance in data streams, in terms of data distributions, imbalance rates and changes in class imbalance status. We find that UOB is better at recognizing minority-class examples in static data streams, and OOB is more robust against dynamic changes in class imbalance status. The data distribution is a major factor affecting their performance. Based on the insight gained, we then propose two new ensemble methods that maintain both OOB and UOB with adaptive weights for final predictions, called WEOB1 and WEOB2. They are shown to possess the strength of OOB and UOB with good accuracy and robustness.
机译:在线课堂失衡学习是一个新的学习问题,它结合了在线学习和课堂失衡学习的挑战。它处理类分布非常偏斜的数据流。这种类型的问题通常存在于现实应用中,例如实时控制监视系统的故障诊断和计算机网络中的入侵检测。在我们早期的工作中,我们在线定义了班级失衡,并提出了两种学习算法OOB和UOB,它们通过重采样和时间衰减的指标构建了一个可以实时克服班级失衡的集成模型。在本文中,我们将进一步改进OOB和UOB内部的重采样策略,并研究它们在静态和动态数据流中的性能。我们首先从数据分布,不平衡率和类不平衡状态的变化方面对数据流中的类不平衡进行全面分析。我们发现,UOB在识别静态数据流中的少数类示例方面更胜一筹,而OOB在类不平衡状态的动态变化方面则更强大。数据分发是影响其性能的主要因素。基于所获得的见解,我们然后提出了两种新的集成方法,称为WEOB1和WEOB2,它们通过自适应权重来维护OOB和UOB以进行最终预测。它们被证明具有OOB和UOB的强度,并具有良好的准确性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号