首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >CRATS: An LDA-Based Model for Jointly Mining Latent Communities, Regions, Activities, Topics, and Sentiments from Geosocial Network Data
【24h】

CRATS: An LDA-Based Model for Jointly Mining Latent Communities, Regions, Activities, Topics, and Sentiments from Geosocial Network Data

机译:CRATS:基于LDA的模型,用于从地社会网络数据中联合挖掘潜在社区,区域,活动,主题和情感

获取原文
获取原文并翻译 | 示例

摘要

Geosocial networks like Yelp and Foursquare have been rapidly growing and accumulating plenty of data such as social links between users, user check-ins to venues, venue geographical locations, venue categories, and user textual comments on venues. These data contain rich knowledge on the user's social interactions in communities, geographical mobility patterns between regions, categorical preferences on activities, aspect interests in topics, and opinion expressions for sentiments. Such knowledge is essential for two key applications, namely, text sentiment classification and venue recommendations, which will be developed in this paper. To extract the knowledge from the data, the key task is to discover the latent communities, regions, activities, topics, and sentiments of users. However, these latent variables are interdependent, e.g., users in the same community usually travel on nearby regions and share common activities and topics, which renders a big challenge for modeling these latent variables. To tackle this challenge, in this study, we propose an LDA-based model called CRATS that jointly mines the latent Communities, Regions, Activities, Topics, and Sentiments based on the important dependencies among these latent variables. To the best of our knowledge, this is the first study to jointly model these five latent variables. Finally, we conduct a comprehensive performance evaluation for CRATS in different applications, including text sentiment classification and venue recommendations, using three large-scale real-world geosocial network data sets collected from Yelp and Foursquare. Experimental results show that CRATS achieves significantly superior performance against other state-of-the-art techniques.
机译:诸如Yelp和Foursquare之类的地理社交网络正在迅速发展,并积累了大量数据,例如用户之间的社交链接,用户签到场所,场所地理位置,场所类别以及用户对场所的文字评论。这些数据包含有关用户在社区中的社交互动,区域之间的地理流动性模式,活动的分类偏好,主题方面的兴趣以及观点表达的丰富知识。这些知识对于两个关键应用至关重要,即文本情感分类和场所推荐,这将在本文中进行开发。为了从数据中提取知识,关键任务是发现潜在的社区,区域,活动,主题和用户情绪。但是,这些潜在变量是相互依存的,例如,同一社区中的用户通常在附近区域旅行并共享共同的活动和主题,这给建模这些潜在变量带来了巨大挑战。为了解决这一挑战,在本研究中,我们提出了一个基于LDA的模型CRATS,该模型基于这些潜在变量之间的重要依存关系,共同挖掘潜在的社区,区域,活动,主题和情感。据我们所知,这是首次对这五个潜在变量进行联合建模的研究。最后,我们使用从Yelp和Foursquare收集的三个大型现实世界地理社交网络数据集,对不同应用中的CRATS进行了全面的性能评估,包括文本情感分类和场所建议。实验结果表明,CRATS与其他最新技术相比,具有明显优越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号